• Title/Summary/Keyword: 3-mass inertia system

Search Result 41, Processing Time 0.026 seconds

A Preliminary Design for Hybrid Building System with Progressive Collapse Prevention Means (연속붕괴가 방지된 초고층 복합빌딩시스템의 예비설계)

  • Choi, Ki-Bong;Cho, Tae-Jun;Kim, Seong-Soo;Lee, Jin-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.3
    • /
    • pp.48-54
    • /
    • 2015
  • In this study, we propose an innovative lateral force distribution building system between tall buildings by utilizing the difference of moment of inertia, resulting the reduction of lateral displacement and the lateral forces in terms of an alternative for the dense human and increased cost of lands in highly integrated city area. A successive collapse prevention means by providing additional bearing plate between connections is proposed. In addition to that, a more economical vibration reduction is expected due to the suggested tuned mass damper on the surface of spacial structure. In the considered verification examples, reduced drifts at the top location of the building systems are validated against static wind pressure loads and static earthquake loads. The suggested hybrid building system will improve the safety and reliability of the new or existing building system in terms of more than 30% reduced drift and vibration through the development of convergence of tall buildings and spatial structures.

Investigation of Transient Performance of An Auxiliary Power Unit Microturbine Engine (보조동력용 마이크로터빈 엔진에 대한 과도성능 해석)

  • Son, Ho-Jae;Kim, Soo-Yong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.3
    • /
    • pp.20-28
    • /
    • 2007
  • The easiest way to see the phenomena of compressor surge is to show the static and dynamic operation characteristic on the map. Its operation zone will be restricted by the surge limit and, static and transient process must have some margin for it. Effect of rotor moment of inertia, air/gas volumes and heat transfer are factors to cause the transition from the static line. In case a large volume such as heat exchanger exists in the system it will exert a substantial influence to dynamic characteristics. In the present paper, influence of air volume bled from the compressor exit on transient process is investigated with an example of an auxiliary power unit micro-turbine engine. Turbine mass, pressure ratio, rotation speed, power and moment are calculated based on mass and work conservation. Result from the present study can give guidance to design the control system. A computer program is developed to calculate the dynamic process using the MathCAD commercial software.

Impact of spar-nacelle-blade coupling on the edgewise response of floating offshore wind turbines

  • Dinh, Van-Nguyen;Basu, Biswajit;Nielsen, Soren R.K.
    • Coupled systems mechanics
    • /
    • v.2 no.3
    • /
    • pp.231-253
    • /
    • 2013
  • The impact of spar-nacelle-blade coupling on edgewise dynamic responses of spar-type floating wind turbines (S-FOWT) is investigated in this paper. Currently, this coupling is not considered explicitly by researchers. First of all, a coupled model of edgewise vibration of the S-FOWT considering the aerodynamic properties of the blade, variable mass and stiffness per unit length, gravity, the interactions among the blades, nacelle, spar and mooring system, the hydrodynamic effects, the restoring moment and the buoyancy force is proposed. The aerodynamic loads are combined of a steady wind (including the wind shear) and turbulence. Each blade is modeled as a cantilever beam vibrating in its fundamental mode. The mooring cables are modeled using an extended quasi-static method. The hydrodynamic effects calculated by using Morison's equation and strip theory consist of added mass, fluid inertia and viscous drag forces. The random sea state is simulated by superimposing a number of linear regular waves. The model shows that the vibration of the blades, nacelle, tower, and spar are coupled in all degrees of freedom and in all inertial, dissipative and elastic components. An uncoupled model of the S-FOWT is then formulated in which the blades and the nacelle are not coupled with the spar vibration. A 5MW S-FOWT is analyzed by using the two proposed models. In the no-wave sea, the coupling is found to contribute to spar responses only. When the wave loading is considered, the coupling is significant for the responses of both the nacelle and the spar.

A Study on the Design of Horizontal Traverse Units in an Automatic Object Changer Unit to Establish a Flexible Production System (Part 2) (유연생산 시스템 구축을 위한 공작물 자동교환 유닛의 수평 이송 기구 설계에 관한 연구(파트 2))

  • Park, Hoo-Myung;Sung, Jae-Kyung;Lee, Yong-Joong;Ha, Man-Kyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.2
    • /
    • pp.52-59
    • /
    • 2008
  • The objective of this study is to develop an automatic object changer unit to improve processing problems existed in the conventional horizontal machining center. To achieve this goal, this study designed a horizontal transfer as the second project continued to the first project that designed a upward and downward traverse unit. A horizontal traverse unit shows a symmetric structure and consists of frame, which consists of four unit tools, motor and reducer, which are fixed at a frame, operation unit with pinions, first traverse unit, and second traverse unit. Constraint conditions based on the operation mechanism with these elements were configured and obtained following results after modeling a model for a traverse motor. In the kinematic expression of sliding motion with one degree of freedom, the sliding motion is constrained. Also, the rack 3 installed at a frame is used to configure possible kinematic constraint conditions of the rack 2 according to the rolling motion of the pinion 2 in the first traverse unit. In addition, the moment of inertia that is a type of kinetic energy in a converted horizontal traverse unit in the side of the reducer can be applied to introduce the moment of inertia of a converted horizontal traverse unit in the side of the reducer by using the sum of kinetic energy in the rack and pinion, which is a part of the horizontal traverse unit. Also, the equation of motion of the converted upward and downward traverse unit in the side of the motor using the equation of motion of the motor. Furthermore, the horizontal traverse unit predetermines the mass of the first and second traverse unit and applied load including the radius and reduction ratio of the pitch circle in the pinion 1 and applied load to the rack 2. Then, a proper motor can be determined using several parameters in the upward and downward traverse unit in order to verify such predetermined specifications. In future studies later this study, a simulation that verifies the results of the previous two stages of studies using a finite element method.

  • PDF

Free Vibration Analysis of a Two-Layered Structure - Formulation by the Transfer Infiuence Coefficient Method - (2층 구조물의 자유진동해석 - 전달영향계수법에 의한 정식화 -)

  • Mun, Deok-Hong;Yeo, Dong-Jun;Kim, Won-Cheol
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.27 no.4
    • /
    • pp.303-312
    • /
    • 1991
  • This paper describes the general formulation for the in-plane flexural free vibration analysis of two layered structure by the transfer influence coefficient method. The structure is regared as a distributed mass system with lumped mass and inertia moments, massless linear and rotational springs, and joints elements of releases and rolls at which the displacements are discontinuous in each layer. The results of the simple numerical examples on a personal computer demonstrate the validity of the present method, that is, the numerical high accuracy, the high speed, the flexibility for programming of the present algorithm, compared with the transfer matrix method.

  • PDF

Chain Length Effect on the Configurational Properties of an n-Alkane Chain in Solution

  • Jeon, Seung-Ho;Ree, Tai-Kyue;Oh, In-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • v.7 no.5
    • /
    • pp.367-371
    • /
    • 1986
  • Dynamic and equilibrium properties of n-alkane chains immersed in solvent molecules have been investigated by a molecular dynamics method. The n-alkane chain is assumed to be a chain of elements (CH$_2$) interconnected by bonds having a fixed bond length and bond angle, but each bond of the chain is allowed to execute hindered internal rotation. We studied the effect of the number of the chain elements (N$_c$ = 10, 15 and 20) on the equilibrium properties of the system, e.g., the pair correlation functions between a chain element and solvent molecules, g$_{cs}$(r), and between the chain elements, g$_{cc}$(r), and the configurational properties such as the mean-square end-to-end distance < R$^2$ >, the mean-square radius of gyration < S$^2$ >, and the eigenvalues of the moment-of-inertia tensor < S$_i^2$ > / < S$^2$ > (i = 1, 2 and 3). We also studied the dynamic properties of the system, e.g., the autocorrelation function C(A;t) where A = R$^2$(t), = S$^2$(t), or = ${\vec{V}}(t)({\vec{V}}$ = velocity of the center of mass), and the diffusion coefficient D. The g$_{cs}$(r)'s are almost equal irrespective of the change of Nc while g$_{cc}$(r) becomes larger as N$_c$ increases; The MD computed configurational properties < R$^2$2 > and < S$^2$ > were found to be a little different from the values calculated from the statistical equations of < R$^2$ > and < S$^2$ >, it may be due to the fact that our model for the MD simulations includes a long-range volume effect. From the < S$_i^2$ > / < S$^2$ >, it is found that the chain molecule has a nearly spherical shape irrespective of the variation of N$_c$. For the dynamic properties we found that the C(R$^2$;t) and C(S$^2$;t) of lower N$_c$ decay faster than those of higher N$_c$, while the C($\vec V$;t) of the center of mass in the chain is weakly dependent on the N$_c$. The center of mass diffusion coefficient D$_c$ decreases as N$_c$ increases while the end point diffusion coefficient D$_e$ is nearly equal irrespective of the change of N$_c$.

Vibration Analysis of Mindlin-Plate Structures having Attachments by the Receptance Method (Receptance 방법에 의한 부가물을 갖는 Mindlin판유추 구조제의 진동해석)

  • S.Y. Han;J.H. Chung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.3
    • /
    • pp.98-106
    • /
    • 1995
  • In ship and offshore structures, there exist many local structural systems which may be regarded as a combined structural systems composed of thick plates or double wall panels and attachments reducible to damped spring-mass systems. For vibration analysis of such a combined system an analytical method based on the receptance method is presented in this paper. The free vibrational characteristics and forced vibration responses of the combined system can be calculated by synthesis of receptances of the panel and attachments. To calculate receptances of the panel, it may be regarded as a Mindlin plate for consideration of effects of shear deformation and rotary inertia and the assumed mode-Lagrange's equation method is applied using Timoshenko beam function or polynomials having properties of Timoshenko beam function as trial functions. Through some numerical calculations, accuracy and efficiency of the presented method are shown.

  • PDF

Numerical Study on Energy Absorption of a Floater for Design of Wave Energy Convertor in Ocean (해양 파력 발전 시스템 설계를 위한 부유체 에너지 흡수에 관한 기초연구)

  • Li, Kui Ming;Parthasarathy, Nanjundan;Choi, Yoon-Hwan;Lee, Yeon-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.5
    • /
    • pp.635-644
    • /
    • 2012
  • In order to design a wave energy generating system, a 6-DOF analysis technique is applied to the three-Dimensional CFD analysis on of a floating body and the behavior is interpreted according to the nature of the incoming wave. A wave period of 5.5s & amplitude of 0.57m from Marado is chosen. 12 case of natural pitching period from 1.25 to 2.8s has been modeled. The relation between tuning factor & pitch angle for the waves generated is compared to analyze the effects of energy absorption variables, namely mass moment of inertia, angular velocity and angular acceleration. From the results obtained, we conclude that model L is the maximum power absorbed, 6kW approximately. A maximum pitch angle of 1.91 degree was attained by Model F, and the maximum displacement of nearly 0.7m was attained by Model L among models D, F and L.

Muscle-Induced Accelerations of Body Segments (근육의 힘이 신체 각 부분의 가속도에 미치는 영향)

  • Khang, Gon
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.1967-1974
    • /
    • 1991
  • When the functional electrical stimulation is employed to recover mobility to the plegic, it is very important to understand functions of the selected muscles. I have investigated how a muscle acts to accelerate the body segments, since the body segements are connected by joints so that contraction of a muscle not only rotates the segments to which it is attached but also causes other segments to rotate by creation a reaction force at every joint, which is called the inertial coupling. I found that a single-joint muscle always acts to accelerate the spanned joint in the same direction as the joint torque produced by the muscle. However, a double-joint muscle can act to accelerate the spanned joint in the opposite direction to the joint torque produced by the muscle depending on (1) the body position, (2) the body-segmental parameters, and (3) the type of the movement. Investigating the condition number of the inertia matrix of the body-segmental model gave us some insights into how controllable the body-segmental system is for different values of the factors mentioned above. The results suggested that the upright position is the most undesirable position to independently control the three segments(trunk, thigh and shank) and that the controllability is the most sensitive to variation of the shank length and the trunk mass, which implies that accuracy is required particularly when we estimate these two body-segmental parameters before the paralyzed muscles are innervated by using electrical stimulation.

A Case Study of the Error of Paleontology Exhibition Datas in the Natural History Museums of Korea (한국 자연사박물관 내 고생물학 전시자료들의 오류발생에 관한 사례연구)

  • Ko, Ju Yeong
    • Journal of the Korean earth science society
    • /
    • v.36 no.3
    • /
    • pp.236-245
    • /
    • 2015
  • This study investigated the errors in presenting paleontology exhibition data in 9 natural history museums for 2 years and two months from 15, Aug. 2013 to 25, March 2015. It was found that seven natural history museums presented 28 difference cases of data in error. The purpose of this study was to investigate why the errors occurred and how to prevent the errors from occurring and finally how to correct the errors earlier. For this purpose, this study review related literatures using conference proceedings, books, conducted a survey via natural history museums. Results suggested five ways to correct errors in the future. First, it is suggested that the authorities of the museum increase the number of curators and have specialists participate in excavation and maintenance, research, preparation of the exhibition data through a collaboration with universities and research institutes. Second, it is also suggested that the authorities establish the classification system to use in the exhibition process and secure a job for their maintenance specialists. Third, the authorities of museum should put an examination process in place as a system by inviting the external experts into the exhibition process and also establish a process of collecting errors identified by any museum visitors. Fourth, the authorities of museum should make an efforts to increase the participating rate of correcting errors through SNS, Docent, and educational programs among the community members and students. Fifth, they also should use mass media to show and present the research-proven figures of paleontological fossils, which hopefully helps resolve issues of the prior unchanging cultural inertia.