• Title/Summary/Keyword: 3-layer thin film

Search Result 1,312, Processing Time 0.034 seconds

Control of Thin Film Media Microstructure by Using Very Thin Seedlayer Material with Different Affinity for Oxygen

  • Djayaprawira, D.D.;Yoshimura, Satoru;Takahashi, Migaku
    • Journal of Magnetics
    • /
    • v.7 no.3
    • /
    • pp.106-114
    • /
    • 2002
  • To reduce the grain size and the media noise in a typical CrMo/CoCrPtB longitudinal media, a sputtering process which includes the exposure of oxygen onto the surface of CrW$_x$ (x=0, 25, 50, 75, 100 at.%) and CrTi$_{15}$ seedlayers with the thickness of 0.5 nm have been utilized. The main results are: (1) the media grain size and the media noise are reduced when using CrW$_x$ (x=0, 25, 50 at.%) seedlayers, and not reduced when using CrTils or CrW$_x$ (x=75, 100 at.%) seedlayers, (2) AES and RHEED results suggest that W seedlayer, which has the highest melting point, forms layer-like film with very small and dense island grain, due to its high free surface energy and low mobility. On the other hand, CrW$_{50}$ and Cr seedlayers, which have lower melting point than W seedlayer, form island film, (3) to effectively reduce the media grain size and improve the media signal to noise ratio, it is essential to utilize a very thin Cr-based seedlayer with high affinity for oxygen and which forms island-like structure, such as CrW$_{50}$ seedlayer.

The Optical Properties of $ZnS/Na_3AlF_6$ Multi-layer Thin Films with Different Optical Thickness ($ZnS/Na_3AlF_6$ 다층박막의 광학적 두께 변화에 따른 광특성)

  • Jang, Gang-Jae;Jang, Geon-Ik;Lee, Nam-Il;Im, Gwang-Su
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2007.04a
    • /
    • pp.128-129
    • /
    • 2007
  • $ZnS/Na_3AlF_6$ multi-layer thin film were produced by evaporation system. ZnS were selected as a high refractive index material and $Na_3AlF_6$ were selected as low refractive index material. Optical properties including color effect were systematically studied in terms of different optical thickness by spectrophotometer. In oder to compare with experimental data, the Essential Macleod Program(EMP) was adopted that simulation program. The thin film consisting of $ZnS/Na_3AlF_6$ multi-layer show the wave length of $530{\sim}600nm$, typically color range between purple, blue, green. It was confirmed that this experimental result was well matched with simulation data.

  • PDF

Optical and electrical property of Indium-doped ZnO (IZO) grown by Atomic Layer Deposition (ALD) using Et2InN(TMS)2 as In precursor and H2O oxidant

  • Jo, Yeong-Jun;Jang, Hyo-Sik
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.421.1-421.1
    • /
    • 2016
  • We studied indium-doped zinc oxide (IZO) film grown by atomic layer deposition (ALD) as transparent conductive oxide (TCO). A variety of TCO layer, such as ZnO:Al (AZO), InSnO2(ITO), Zn (O,S) etc, has been grown by various method, such as ALD, chemical vapor deposition (CVD), sputtering, laser ablation, sol-gel technique, etc. Among many deposition methods, ALD has various advantages such as uniformity of film thickness, film composition, conformality, and low temperature deposition, as compared with other techniques. In this study, we deposited indium-doped zinc oxide thin films using diethyl[bis(trimethylsilyl)amido]indium [Et2InN(TMS)2] as indium precursor, DEZn as zinc precursor and H2O as oxidant for ALD and investigated the optical and electrical properties of IZO films. As an alternative, this liquid In precursor would has several advantages in indium oxide thin-film processes by ALD, especially for low resistance indium oxide thin film and high deposition rate as compared to InCp, InCl3, TMIn precursors etc. We found out that Indium oxide films grown by Et2InN(TMS)2 and H2O precursor show ALD growth mode and ALD growth window. We also found out the different growth rate of Indium oxide as the substrate and investigated the effect of the substrate on Indium oxide growth.

  • PDF

Quench characteristics of thin film type SFCLs with shunt layers of various thickness (션트박막 두께에 따른 박막형 초전도 한류소자의 ?치특성)

  • 김혜림;이승엽;차상도;최효상;현옥배
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.02a
    • /
    • pp.242-245
    • /
    • 2003
  • We investigated the quench characteristics of thin film type SFCLs with shunt layers of various thickness. The SFCLs ware based on 2 inch diameter YBa$_2$Cu$_3$3O$_{7}$ thin films coated in-situ with a gold shunt layer. The shunt layer thickness was varied by Ar ion milling. The limiters were tested with simulated fault currents at various source voltages. The thinner the shunt layer was, the slower was the rise of SFCL temperatures. This means SFCLs of thinner shunt layers had higher voltage ratings. The voltage rating was approximately inversely proportional to the square root of the shunt layer thickness. This result could be understood through the concept of heat balance.e.

  • PDF

Effect of Thermal Heat Treatment on the Characteristics of Vertical Type Organic Thin Film Transistor Using Alq3 as Active Layer and Its Application for OLET

  • Oh, Se-Young;Kim, Young-Do;Hwang, Sun-Kak
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.644-647
    • /
    • 2007
  • We have fabricated vertical type organic thin film transistor using tris-8-hydroxyquinoline aluminum $(Alq_3)$. The effects of the growth control of $Alq_3$ thin layer on the grain structure and the flatness of film surface have been investigated. In addition, we have fabricated light emitting transistor and then investigated electroluminescent properties.

  • PDF

Optimization of active layer for the fabrication of transparent thin film transistor based on ZnO (ZnO 기반의 투명 박막 트랜지스터 제작을 위한 Active-layer의 최적화에 대한 연구)

  • Chang, Seong-Pil;Lee, Sang-Gyu;Son, Chang-Wan;Leem, Jae-Hyeon;Song, Yong-Won;Ju, Byung-Kwon;Lee, Sang-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 2007.11a
    • /
    • pp.94-95
    • /
    • 2007
  • We have observed electrical properties of ZnO thin films for the fabrication of transparent thin film transistor. ZnO thin films were deposited on $Al_2O_3$(0001) substrate at various temperatures by pulsed laser deposition(PLD). The third of harmonic(355nm) Nd:YAG laser was used for pulsed laser deposition. X-ray diffraction(XRD), field emission-scanning electron microscope(FE-SEM), and photoluminescence were used to characterize physical and optical properties of ZnO thin film.. The results indicated the ZnO film showed good optical properties as increasing temperatures, with low FWHM of exciton-related peak and XRD(0002) peak.

  • PDF

a-Si:H Photodiode Using Alumina Thin Film Barrier

  • Hur Chang-Wu;Dimitrijev Sima
    • Journal of information and communication convergence engineering
    • /
    • v.3 no.4
    • /
    • pp.179-183
    • /
    • 2005
  • A photodiode capable of obtaining a sufficient photo/ dark current ratio at both forward bias state and reverse bias state is proposed. The photodiode includes a glass substrate, an aluminum film formed as a lower electrode over the glass substrate, an alumina film formed as an insulator barrier over the aluminum film, a hydrogenated amorphous silicon film formed as a photo conduction layer over a portion of the alumina film, and a transparent conduction film formed as an upper electrode over the hydro-generated amorphous silicon film. A good quality alumina $(Al_2O_3)$ film is formed by oxidation of aluminum film using electrolyte solution of succinic acid. Alumina is used as a potential barrier between amorphous silicon and aluminum. It controls dark-current restriction. In case of photodiodes made by changing the formation condition of alumina, we can obtain a stable dark current $(\~10^{-12}A)$ in alumina thickness below $1000{\AA}$. At the reverse bias state of the negative voltage in ITO (Indium Tin Oxide), the photo current has substantially constant value of $5{\times}10^{-9}$ A at light scan of 100 1x. On the other hand, the photo/dark current ratios become higher at smaller thicknesses of the alumina film. Therefore, the alumina film is used as a thin insulator barrier, which is distinct from the conventional concept of forming the insulator barrier layer near the transparent conduction film. Also, the structure with the insulator thin barrier layer formed near the lower electrode, opposed to the ITO film, solves the interface problem of the ITO film because it provides an improved photo current/dark current ratio.

Effect of Adhesion Layer on Gate Insulator (게이트 절연막에 사용된 점착층에 대한 영향)

  • Lee, Dong-Hyun;Hyung, Gun-Woo;Pyo, Sang-Woo;Kim, Young-Kwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.4
    • /
    • pp.357-361
    • /
    • 2006
  • The electrical performances of organic thin-film transistors (OTFTs) have been improved for the last decade. In this paper, it was demonstrated that the electrical characteristics of the organic thin film transistors (OTFTs) were improved by using polymeric material as adhesion layer on gate insulator. We have investigated OTFTs with polyimide adhesion layer which was fabricated by vapor deposition polymerization (VDP) processing and formed by co-deposition of 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride and 4,4'-oxydianiline. It was found that the OTFTs with adhesion layer showed better electrical characteristics than with bare layer because of good matching between semiconductor and gate insulator. Our devices of performance are field effect mobility of $0.4cm^2/Vs$, threshold voltage of -0.8 V and on-off current ratio of $10^6$. In addition, to improve the electrical characteristics of OTFT, we have reduced the thickness of adhesion layer up to a few nanometrs.

Characteristics of AlN thin films for SAW filters based on substrates (기판의 종류에 따른 SAW 필터용 AlN 박막의 특성)

  • Ko, Bong-Chul;Nam, Chang-Woo
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.240-245
    • /
    • 2007
  • AlN thin film for SAW filter application was deposited on (100) silicon, sapphire, $Si_{3}N_{4}$/Si, and $Al_{2}O_{3}$/Si substrates by reactive magnetron sputtering method, respectively. The structural characteristics were dependent on the structure of substrates. Scanning Electron Microscope (SEM), X-ray Diffraction (XRD) and Atomic Force Microscope (AFM) have been used to analyze structural properties and preferred orientation of AlN thin films. Preferred orientation and SAW characteristic of AlN were improved by insertion of $Al_{2}O_{3}$ buffer layer. Insertion loss of SAW devices using AlN/Si and AlN/$Al_{2}O_{3}$/Si were about 33.27 dB and 30.20 dB, respectively.

Optical Thin Film and Micro Lens Design for Efficiency Improvement of Organic Light Emitting Diode (유기 발광소자의 효율 향상을 위한 광학박막 및 마이크로렌즈 설계)

  • Ki, Hyun-Chul;Kim, Doo-Gun;Kim, Seon-Hoon;Kim, Sang-Gi;Park, A-Reum;Gu, Hal-Bon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.10
    • /
    • pp.817-821
    • /
    • 2011
  • We have proposed an optical thin film and micro lens to improve the luminance of organic light emitting device. The first method, optical thin film was calculated refractive index of dielectric layer material that was modulated refractive index of organic material, ITO (indium tin oxide)and glass. The second method, microlens was applied with lenses on the organic device. Optical thin films were designed with Macleod Simulator and Micro Lenses were calculated by FDTD (finite-difference time-domain) solution. The structure of thin film was designed in organic material/ITO/dielectric layer/glass. The lenses size, height and distance were 5 ${\mu}m$, 1 ${\mu}m$, 1 ${\mu}m$, respectively. The material of micro lenses used silicon dioxide. Result, The highest luminance of OLED which applied with microlens was 11,185 $cd/m^2$, when approval voltage was 14.5 V, applied thin film was 5,857 $cd/m^2$. The device efficiency applying microlens increased 3 times than the device which does not apply microlens.