• Title/Summary/Keyword: 3-dimensional scanning

Search Result 519, Processing Time 0.023 seconds

A Study on the Dynamic Expression of Fabrics based on RGB-D Sensor and 3D Virtual Clothing CAD System (RGB-D 센서 및 3D Virtual Clothing CAD활용에 의한 패션소재의 동적표현 시스템에 대한 연구)

  • Lee, Jieun;Kim, Soulkey;Kim, Jongjun
    • Journal of Fashion Business
    • /
    • v.17 no.1
    • /
    • pp.30-41
    • /
    • 2013
  • Augmented reality techniques have been increasingly employed in the textile and fashion industry as well as computer graphics sectors. Three-dimensional virtual clothing CAD systems have also been widely used in the textile industries and academic institutes. Motion tracking techniques are grafted together in the 3D and augmented reality techniques in order to develop the virtual three-dimensional clothing and fitting systems in the fashion and textile industry sectors. In this study, three-dimensional virtual clothing sample has been prepared using a 3D virtual clothing CAD along with a 3D scanning and reconstruction system. Motion of the user has been captured through an RGB-D sensor system, and the virtual clothing fitted on the user's body is allowed to move along with the captured motion flow of the user. Acutal fabric specimens are selected for the material characterization. This study is a primary step toward building a comprehensive system for the user to experience interactively virtual clothing under real environment.

Development of high speed synchronous control system for real time 3D eye imaging equipment using deadbeat observer (데드비트 관측기를 이용한 망막의 3차원 실시간 영상화를 위한 고속 동기제어 시스템 개발)

  • Ko Jong-Sun;Kim Young-Il;Lee Tae-hoon
    • Proceedings of the KIPE Conference
    • /
    • 2002.11a
    • /
    • pp.177-180
    • /
    • 2002
  • To show a retina shape and thickness on the computer monitor, a laser has been used in Scanning Laser Ophthalmoscope(SLO) equipment using the travelling difference. This method requires exact synchronous control of laser travelling in optic system to show a clear 3-dimensional image of retina. To obtain this image, this exact synchronism is very important for making the perfect plane scanning. In this study, a synchronous control of the galvanometer using deadbeat torque observer to make 3-dimensional retina image is presented. For the more, a very simple mathematical model of the galvanometer is approved by experimental result.

  • PDF

Contemporary Diagnosis and Orthodontic Treatment in Orthognathic Surgery (임상가를 위한 특집 3 - 악교정 수술환자의 진단과 교정치료)

  • Baik, Hyoung-Seon
    • The Journal of the Korean dental association
    • /
    • v.50 no.2
    • /
    • pp.72-82
    • /
    • 2012
  • Recently in treatment planning for orthognathic surgery, 3-dimensional analysis using CBCT can give more detailed information that cannot be achieved with 2-dimensional cephalograms. Also, laser Scanning and 3D camera can show 3-dimensional information on soft tissue changes as well as hard tissue changes in orthognathic surgery patients. In other words, soft tissue changes in lateral facial area as well as mid facial area can be quantitatively calculated. To bring out the best results from orthognathic surgery, close interaction between orthodontist and oral surgeon is needed and well treated pre-surgical orthodontics can simplify orthognathic surgical plan that also results in good long-term stability. In surgery-first cases, more thoughtful diagnosis and pre-operative preparation will be needed to prevent complicated problems.

Fabrication of Three-Dimensional Scanning System for Inspection of Massive Sinkhole Disaster Sites (대형 싱크홀 재난 현장 조사용 3차원 형상화 장비 구현)

  • Kim, Soolo;Yoon, Ho-Geun;Kim, Sang-Wook
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.4
    • /
    • pp.341-349
    • /
    • 2020
  • Recently, interest in ground subsidence in urban areas has increased after a large sinkhole occurred near the high-story building area in Jamsil, Seoul, Korea, in 2014. If a massive sinkhole occurs in an urban area, it is crucial to assess its risk rapidly. Access to humans for on-site safety diagnosis may be difficult because of the additional risk of collapse in the disaster area. Generally, inspection using drones equipped with high-speed lidar sensors can be utilized. However, if the sinkhole is created vertically to a depth of 100 m, similar to the sinkhole in Guatemala, the drone cannot be applied because of the wireless communication limit and turbulence inside the sinkhole. In this study, a three-dimensional (3D) scanning system was fabricated and operated using a towed cable in a massive vertical sinkhole to a depth of 200 m. A high-speed lidar sensor was used to obtain a continuous cross-sectional shape at a certain depth. An inertial-measuring unit was applied to compensate for the error owing to the rotation and pendulum movement of the measuring unit. A reconstruction algorithm, including the compensation scheme, was developed. In a vertical hole with a depth of 180 m in the mining area, the fabricated system was applied to scan 0-165 m depth. The reconstructed shape was depicted in a 3D graph.

The Geometric Modeling for 3D Information of X-ray Inspection (스테레오 X-선 검색장치를 이용한 3차원 정보 가시화에 관한 연구)

  • Hwang, Young-Gwan;Lee, Seung-Min;Park, Jong-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.1
    • /
    • pp.145-149
    • /
    • 2014
  • In this study, using X-ray cargo container scanning device and to differentiate the concept of three-dimensional information extraction applied for X-ray scanning device as an ingredient in the rotation of the X-Ray Linear Pushbroom Stereo System by introducing the geometric How to model was introduced. Three-dimensional information obtained through the matching of a single voxel space filled with a random vector operations for each voxel in the three dimensional shape reconstruction algorithm using the definition, and in time, the time required for each step were analyzed. Using OpenCV in each step by applying parallelization techniques approximately 1.8 times improvement in the processing time of the check, but do not meet the target within one minute levels. The other hand, X-ray images by the primary process to convert the point View the results of real-time stereo through a three-dimensional could feel the comfort level.

Atomically sculptured heart in oxide film using convergent electron beam

  • Gwangyeob Lee;Seung-Hyub Baek;Hye Jung Chang
    • Applied Microscopy
    • /
    • v.51
    • /
    • pp.1.1-1.2
    • /
    • 2021
  • We demonstrate a fabrication of an atomically controlled single-crystal heart-shaped nanostructure using a convergent electron beam in a scanning transmission electron microscope. The delicately controlled e-beam enable epitaxial crystallization of perovskite oxide LaAlO3 grown out of the relative conductive interface (i.e. 2 dimensional electron gas) between amorphous LaAlO3/crystalline SrTiO3.

Scanning System and Reproduction of Adjustable Lower Dental Impression Tray (스캐닝 시스템과 하악용 가변형 트레이의 재현성)

  • Cha, Young-Youp;Eom, Sang-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.3
    • /
    • pp.254-257
    • /
    • 2011
  • This study was performed to development a dental three-dimensional laser scanning system and measure the accuracy of new adjustable lower dental impression trays. Multiple impressions of a resin master model were made with custom, stock and new adjustable trays and vinyl polysiloxane impression material. The lower master model and resulting cast were compared using an dental scanning system. Each 3D image was superimposed onto the lower master model image and analyzed with custom software. Multiple measurements of the lower master model and casts were analyzed to determine the accuracy of tray types.

Development of Dental Scanning System and Reproduction of Adjustable Upper Dental Impression Tray (치과용 스캐닝 시스템의 개발과 가변형 상악용 트레이의 재현성)

  • Cha, Young-Youp;Eom, Sang-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.3
    • /
    • pp.300-304
    • /
    • 2010
  • This study was performed to development a dental three-dimensional laser scanning system and measure the accuracy of new adjustable upper dental impression tray. The metal stock, individual, and new adjustable stock trays were used for 30 stone casts(10 casts each) duplicated a resin master model of maxilla. The dental stone was poured in a vinyl polysiloxane impressions and allowed to set for on hour. The master model and the duplicated casts were digitized using an dental scanning system. The distance between the reference points were measured and analyzed on the graphic image of 3D graphic software of CATIA. The statistical significance of the differences between the groups was determined by a two-way ANOVA. There were no significant differences between the accuracies of the adjustable stock tray and the master model except only anterior arch width on the upper arch. The adjustable upper stock tray showed clinically acceptable accuracies of the study cast produced by them.

Analysis of Master Dimensional Shape Error Rate According to Reverse Engineering Technique (역설계 방법에 의한 시편 치수 형상의 오차율 분석)

  • Jung, Hyun-Suk;Park, Su-Jung;Yoo, Joong-Hak
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.5
    • /
    • pp.393-399
    • /
    • 2016
  • In this study, an experiment was conducted using a 3D scanner, commonly used in reverse engineering techniques, and the newly introduced CT measuring machine. The hole, width, and angle of specimens having various shapes were designated, the error rates in dimensional modelling generated during scanning with each device were compared, and the models were printed using a 3D printer. A secondary comparative analysis of the two printed specimens was conducted; the causes of dimension errors that occur during the printing process after scanning with each device and the differences associated with variation in shape were also analyzed. Based on the analysis results, the featured shape for each scanning application method and issues to consider in reverse engineering were presented, and the use of the CT measuring machine was recommended as a method to minimize error rates in dimensions and ensure efficient reverse engineering.