• 제목/요약/키워드: 3-dimensional printing

검색결과 286건 처리시간 0.023초

3D-Printed Disease Models for Neurosurgical Planning, Simulation, and Training

  • Park, Chul-Kee
    • Journal of Korean Neurosurgical Society
    • /
    • 제65권4호
    • /
    • pp.489-498
    • /
    • 2022
  • Spatial insight into intracranial pathology and structure is important for neurosurgeons to perform safe and successful surgeries. Three-dimensional (3D) printing technology in the medical field has made it possible to produce intuitive models that can help with spatial perception. Recent advances in 3D-printed disease models have removed barriers to entering the clinical field and medical market, such as precision and texture reality, speed of production, and cost. The 3D-printed disease model is now ready to be actively applied to daily clinical practice in neurosurgical planning, simulation, and training. In this review, the development of 3D-printed neurosurgical disease models and their application are summarized and discussed.

치과 3D 프린팅용 광중합 시간에 따른 중합도 비교 (Comparison of polymerization by time of light curing for dental 3D printing)

  • 김동연;이광영
    • 대한치과기공학회지
    • /
    • 제44권3호
    • /
    • pp.76-80
    • /
    • 2022
  • Purpose: The purpose of this study is to analyze the depth according to curing using photocurable resin for dental three-dimensional printing. Methods: A stainless mold with a height of 4 mm was prepared. Ultraviolet (UV) polymerization resin was injected into the mold. Photocuring was then performed for 5 minutes using a photopolymerizer, and the height was measured using a digital measuring instrument (first group). Second, light polymerization was also performed outside the mold for 5 minutes, and the height was measured using a digital measuring instrument. Third, light polymerization was further performed for 5 minutes, and the height was measured using a digital measuring instrument. Statistical analysis was performed with the Kruskal-Wallis test, which is a nonparametric test (α=0.05). Results: The third group had the largest measurement length, whereas the first group had the smallest. However, the difference between groups was not statistically significant (p>0.05). The color of the first group was different from that of the second and third groups. Conclusion: All of the 4-mm-thick photocured specimens had a curing reaction, but the part that was not directly irradiated with UV did not show its original color.

3 차원 금속 프린팅을 위한 다중 3 차원 적층 알고리듬(3DL) (Three Dimensional Layering Algorithm for 3-D Metal Printing Using 5-axis)

  • 류수아;지해성
    • 대한기계학회논문집A
    • /
    • 제38권8호
    • /
    • pp.881-886
    • /
    • 2014
  • 5 축 기반 3 차원 금속 프린팅에서는 파트형상에 overhang/undercut 형상이 존재하여도 tilting과 rotating의 2 축을 이용하여 파트형상의 조형 방향을 자유롭게 바꾸어 지지구조물(support structure) 형상피처의 추가 없이 3-D 적층(3DL: 3-D layering)이 가능하게 된다. 이를 위해서는 overhang/undercut의 형상근처에서 국부적으로 tilting과 rotating 정보에 맞는 조형 층 적층 정보를 제공하는 새로운 전처리기(preprocessor) 기능이 필요하게 된다. 본 논문에서는 overhang/undercut 과 같은 형상들을 자동으로 진단하고 검출하여 3 차원 layering 이 가능할 수 있도록 방사형 기울기 측정법(calculation of radial gradient: CRG)과 은유적 자동 분할 알고리듬(implicit auto-partitioning algorithm: IAP)을 통해 다중 적층 알고리듬(Multi-part Layering Algorithm: MPL)을 구현함을 제시하고 이를 실제 STL 형상파일에 적용하여 제시된 이론을 검증하고자 하였다.

영상해부학 교육을 위한 3차원 인체 모사 조형물 제작 사례 연구 (A Case Study of Three Dimensional Human Mimic Phantom Production for Imaging Anatomy Education)

  • 성열훈
    • 한국방사선학회논문지
    • /
    • 제12권1호
    • /
    • pp.71-78
    • /
    • 2018
  • 본 연구에서는 인체 모사 조형물을 3차원 프린팅으로 출력한 사례를 보고하고자 하였다. 재료는 용융적층방식의 개인용 3차원 프린터 장비와 폴리락트산을 소재로 사용하였다. 3차원 인체 모사 조형물 출력은 모델링하는 단계, 평면화 작업과 G-code 변환 단계,출력변수 설정 단계, 3D 출력단계, 마지막으로 후처리 단계 순으로 진행하였으며, 학생들의 학습만족도(해부학인지도, 수업흥미도)를 리커트 5 점 척도로 조사하였다. 그 결과, 총 20가지의 3차원 인체 모사 조형물을 성공적으로 출력하였다. 총 출력소요시간은 11,691분(194시간 85분)이었으며 평균 출력소요시간은 584.55분(9시간 7분)이었다. 이에 소요된 필라멘트량은 총 2,390.2 g 이었으며 평균 119.51 g 이 소요되었다. 학습만족도의 해부학인지도는 평균 4.6 점, 수업흥미도는 평균 4.5 점으로 높은 것으로 나타났다. 앞으로 3차원 프린팅 기술은 영상해부학 교육의 학습효과를 높여줄 수 있으리라 기대한다.

Three-dimensional Printing of Shape Memory Alloys

  • Carreno-Morelli, E.;Martinerie, S.;Bidaux, J.E.
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.256-257
    • /
    • 2006
  • 3D printing of NiTi alloys has been successfully achieved. A novel printing process has been developed and used, which consists in selective deposition of a solvent on a granule bed. The granules are composed of metal powders and thermoplastic binder, which are mixed and sieved by conventional methods. A sound green strength is obtained after solvent evaporation. Sintered parts exhibit good density, proper phase composition and shape memory behaviour.

  • PDF

3D-printing Bone Model for Surgical Planning of Corrective Osteotomy for Treatment of Medial Patellar Luxation in a Dog

  • Jeong, Bumsoo;Jung, Jaemin;Park, Jiyoung;Jeong, Seong Mok;Lee, Haebeom
    • 한국임상수의학회지
    • /
    • 제33권6호
    • /
    • pp.385-388
    • /
    • 2016
  • A 2-year-old, castrated male Chihuahua dog was referred for revision surgery for reluxation of the patella following surgery for medial patellar luxation (MPL) of the left stifle joint. On general inspection, the patient showed bilateral hindlimb weight-bearing lameness. On physical examination, bilateral non-reducible MPL was detected through palpation. Radiographs revealed bone deformities of both hindlimbs. Computed tomography (CT) was applied for a three-dimensional (3D) printing bone model to establish an accurate surgical plan. The bone plate was pre-contoured over the 3D-printing bone model after execution of corrective osteotomy and sterilized prior to use in surgery. Corrective osteotomy was performed through a staged, bilateral procedure. The patient showed improvement of limb function following surgery without reluxation of the patella. The use of 3D-printing bone model for accurate surgical planning of corrective osteotomy appears to be effective in increasing the accuracy of surgery. That may lead to successful surgical outcomes.

툴 체인지 방식 멀티 노즐 3D프린터의 설계 및 제작 (Design and Fabrication of Tool Change Multi-nozzle FDM 3D Printer)

  • 석익현;박종규
    • 한국기계가공학회지
    • /
    • 제20권2호
    • /
    • pp.38-44
    • /
    • 2021
  • To cater to the transition from single-color to multicolor/multi-material printing, this paper proposes a cartridge-replacing type multi-nozzle Fused Depositon Modeling(FDM) three-dimensional (3D) printer. In the test printing run, tool change failure/wobble/layer shift occurred. It was confirmed that improper support was the cause of this tool change failure. As a solution, spline and electromagnetic cartridges were designed. Wobble was caused by machine vibration and the motor stepping out. To minimize wobble, an additional Z-axis was installed, and the four-point bed leveling method was used instead of the three-point bed leveling method. The occurrence of layer shift was ascribed to the eccentricity of the Z-axis lead screw. Therefore, slit coupler was replaced with an Oldham type. In addition to the mechanical supplementation, the control environment was integrated to prevent accidents and signal errors due to wire connections. Before the final test printing run, a rectifier circuit was added to the motor to secure precise control stability. The final test printing run confirmed that the wobble/layer shift phenomenon was minimized, and the maximum error between layers was reduced to 0.05.

X-ray tomography 분석과 기계 학습을 활용한 금속 3D 프린팅 소재 내의 기공 형태 분류 (Characterization and Classification of Pores in Metal 3D Printing Materials with X-ray Tomography and Machine Learning)

  • 김은아;권세훈;양동열;유지훈;김권일;이학성
    • 한국분말재료학회지
    • /
    • 제28권3호
    • /
    • pp.208-215
    • /
    • 2021
  • Metal three-dimensional (3D) printing is an important emerging processing method in powder metallurgy. There are many successful applications of additive manufacturing. However, processing parameters such as laser power and scan speed must be manually optimized despite the development of artificial intelligence. Automatic calibration using information in an additive manufacturing database is desirable. In this study, 15 commercial pure titanium samples are processed under different conditions, and the 3D pore structures are characterized by X-ray tomography. These samples are easily classified into three categories, unmelted, well melted, or overmelted, depending on the laser energy density. Using more than 10,000 projected images for each category, convolutional neural networks are applied, and almost perfect classification of these samples is obtained. This result demonstrates that machine learning methods based on X-ray tomography can be helpful to automatically identify more suitable processing parameters.

Evaluation of the accuracy of dental casts manufactured with 3D printing technique in the All-on-4 treatment concept

  • Hilin, Tas;Fatih, Demirci;Mesut, Tuzlali;Erkan, Bahce;Guler Yildirim, Avcu
    • The Journal of Advanced Prosthodontics
    • /
    • 제14권6호
    • /
    • pp.379-387
    • /
    • 2022
  • PURPOSE. The aim of this study is to compare the casts obtained by using conventional techniques and liquid crystal display (LCD) three-dimensional (3D) print techniques in the All-on-4 treatment concept of the edentulous mandibular jaw. MATERIALS AND METHODS. In this study, a completely edentulous mandibular acrylic cast (typodont) with bone-level implants placed with the Allon-4 technique served as a reference cast. In this typodont, impressions were taken with the conventional technique and dental stone casts were obtained. In addition, after scanning the acrylic cast in a dental laboratory scanner and obtaining the Standard Tessellation Language (STL) data, 3D printed casts were manufactured with a 3D printing device based on the design. The stone and 3D printed casts were scanned in the laboratory scanner and STL data were obtained, and then the interimplant distances were measured using Geomagic Control X v2020 (3D Systems, Rock Hill, SC, USA) analysis software (n = 60). The obtained data were statistically evaluated with one-way analysis of variance (ANOVA) and Tukey's pairwise comparison tests. RESULTS. As a result of the one-way ANOVA test, it was determined that the stone casts, 3D printed casts, and reference cast values in all distance intervals conformed to the normal distribution and these values had a significant difference among them in all distance intervals. In Tukey pairwise comparison test, significant differences were found between casts at all distance intervals. In all analyses, the level of significance was determined as .05. CONCLUSION. 3D printed casts obtained with a 3D LCD printing device can be an alternative to stone casts when implants are placed in edentulous jaws. [J Adv Prosthodont 2022;14:379-87]

Creating protective appliances for preventing dental injury during endotracheal intubation using intraoral scanning and 3D printing: a technical note

  • Cho, Jin-Hyung;Park, Wonse;Park, Kyeong-Mee;Kim, Seo-Yul;Kim, Kee-Deog
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • 제17권1호
    • /
    • pp.55-59
    • /
    • 2017
  • Digital dentistry has influenced many dental procedures, such as three-dimensional (3D) diagnosis and treatment planning, surgical splints, and prosthetic treatments. Patient-specific protective appliances (PSPAs) prevent dental injury during endotracheal intubation. However, the required laboratory work takes time, and there is the possibility of tooth extraction while obtaining the dental impression. In this technical report, we utilized new digital technology for creating PSPAs, using direct intraoral scanners and 3D printers for dental cast fabrication.