• Title/Summary/Keyword: 3-dimensional printing

Search Result 286, Processing Time 0.029 seconds

3D-Printed Disease Models for Neurosurgical Planning, Simulation, and Training

  • Park, Chul-Kee
    • Journal of Korean Neurosurgical Society
    • /
    • v.65 no.4
    • /
    • pp.489-498
    • /
    • 2022
  • Spatial insight into intracranial pathology and structure is important for neurosurgeons to perform safe and successful surgeries. Three-dimensional (3D) printing technology in the medical field has made it possible to produce intuitive models that can help with spatial perception. Recent advances in 3D-printed disease models have removed barriers to entering the clinical field and medical market, such as precision and texture reality, speed of production, and cost. The 3D-printed disease model is now ready to be actively applied to daily clinical practice in neurosurgical planning, simulation, and training. In this review, the development of 3D-printed neurosurgical disease models and their application are summarized and discussed.

Comparison of polymerization by time of light curing for dental 3D printing (치과 3D 프린팅용 광중합 시간에 따른 중합도 비교)

  • Kim, Dong-Yeon;Lee, Gwang-Young
    • Journal of Technologic Dentistry
    • /
    • v.44 no.3
    • /
    • pp.76-80
    • /
    • 2022
  • Purpose: The purpose of this study is to analyze the depth according to curing using photocurable resin for dental three-dimensional printing. Methods: A stainless mold with a height of 4 mm was prepared. Ultraviolet (UV) polymerization resin was injected into the mold. Photocuring was then performed for 5 minutes using a photopolymerizer, and the height was measured using a digital measuring instrument (first group). Second, light polymerization was also performed outside the mold for 5 minutes, and the height was measured using a digital measuring instrument. Third, light polymerization was further performed for 5 minutes, and the height was measured using a digital measuring instrument. Statistical analysis was performed with the Kruskal-Wallis test, which is a nonparametric test (α=0.05). Results: The third group had the largest measurement length, whereas the first group had the smallest. However, the difference between groups was not statistically significant (p>0.05). The color of the first group was different from that of the second and third groups. Conclusion: All of the 4-mm-thick photocured specimens had a curing reaction, but the part that was not directly irradiated with UV did not show its original color.

Three Dimensional Layering Algorithm for 3-D Metal Printing Using 5-axis (3 차원 금속 프린팅을 위한 다중 3 차원 적층 알고리듬(3DL))

  • Ryu, Sua;Jee, Haeseong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.8
    • /
    • pp.881-886
    • /
    • 2014
  • The purpose of three-dimensional (3-D) metal printing using 5-axis is to deposit metal powder by changing the orientation of the deposited structure to be built for the overhang or undercut feature on part geometry. This requires a complicated preprocess functionality of providing three dimensionally sliced layers to cover the required part geometry. This study addresses the overhang/undercut problem in 3-D metal printing and discusses a possible solution of providing 3-D layers to be built using the DMT(R) machine.

A Case Study of Three Dimensional Human Mimic Phantom Production for Imaging Anatomy Education (영상해부학 교육을 위한 3차원 인체 모사 조형물 제작 사례 연구)

  • Seoung, Youl-Hun
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.1
    • /
    • pp.71-78
    • /
    • 2018
  • In this study, human mimic phantoms outputted by three-dimensional (3D) printing technology are reported. Polylactic acid and a personal 3D printer - fused deposition modeling (FDM) - are used as the main material and the printing device. The output of human mimic phantoms performed in the following order: modeling, slicing and G-code conversion, output variable setting, 3D output, and post-processing. The students' learning satisfaction (anatomical awareness, study interest) was measured on 5-point Likert scale. After that, Twenty of those phantoms were outputted. The total output took 11,691 minutes (194 hours 85 minutes) and the average output took 584.55 minutes (9 hours 7 minutes). The filament used for the experiment was 2,390.2 g, and the average use of the filament was 119.51 g. The learning satisfaction of anatomical awareness was 4.6 points on the average and the interest of the class was on average 4.5 points. It is expecting that 3D printing technology can enhance the learning effect of imaging anatomy education.

Three-dimensional Printing of Shape Memory Alloys

  • Carreno-Morelli, E.;Martinerie, S.;Bidaux, J.E.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.256-257
    • /
    • 2006
  • 3D printing of NiTi alloys has been successfully achieved. A novel printing process has been developed and used, which consists in selective deposition of a solvent on a granule bed. The granules are composed of metal powders and thermoplastic binder, which are mixed and sieved by conventional methods. A sound green strength is obtained after solvent evaporation. Sintered parts exhibit good density, proper phase composition and shape memory behaviour.

  • PDF

3D-printing Bone Model for Surgical Planning of Corrective Osteotomy for Treatment of Medial Patellar Luxation in a Dog

  • Jeong, Bumsoo;Jung, Jaemin;Park, Jiyoung;Jeong, Seong Mok;Lee, Haebeom
    • Journal of Veterinary Clinics
    • /
    • v.33 no.6
    • /
    • pp.385-388
    • /
    • 2016
  • A 2-year-old, castrated male Chihuahua dog was referred for revision surgery for reluxation of the patella following surgery for medial patellar luxation (MPL) of the left stifle joint. On general inspection, the patient showed bilateral hindlimb weight-bearing lameness. On physical examination, bilateral non-reducible MPL was detected through palpation. Radiographs revealed bone deformities of both hindlimbs. Computed tomography (CT) was applied for a three-dimensional (3D) printing bone model to establish an accurate surgical plan. The bone plate was pre-contoured over the 3D-printing bone model after execution of corrective osteotomy and sterilized prior to use in surgery. Corrective osteotomy was performed through a staged, bilateral procedure. The patient showed improvement of limb function following surgery without reluxation of the patella. The use of 3D-printing bone model for accurate surgical planning of corrective osteotomy appears to be effective in increasing the accuracy of surgery. That may lead to successful surgical outcomes.

Design and Fabrication of Tool Change Multi-nozzle FDM 3D Printer (툴 체인지 방식 멀티 노즐 3D프린터의 설계 및 제작)

  • Suk, Ik-hyun;Park, Jong-kyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.2
    • /
    • pp.38-44
    • /
    • 2021
  • To cater to the transition from single-color to multicolor/multi-material printing, this paper proposes a cartridge-replacing type multi-nozzle Fused Depositon Modeling(FDM) three-dimensional (3D) printer. In the test printing run, tool change failure/wobble/layer shift occurred. It was confirmed that improper support was the cause of this tool change failure. As a solution, spline and electromagnetic cartridges were designed. Wobble was caused by machine vibration and the motor stepping out. To minimize wobble, an additional Z-axis was installed, and the four-point bed leveling method was used instead of the three-point bed leveling method. The occurrence of layer shift was ascribed to the eccentricity of the Z-axis lead screw. Therefore, slit coupler was replaced with an Oldham type. In addition to the mechanical supplementation, the control environment was integrated to prevent accidents and signal errors due to wire connections. Before the final test printing run, a rectifier circuit was added to the motor to secure precise control stability. The final test printing run confirmed that the wobble/layer shift phenomenon was minimized, and the maximum error between layers was reduced to 0.05.

Characterization and Classification of Pores in Metal 3D Printing Materials with X-ray Tomography and Machine Learning (X-ray tomography 분석과 기계 학습을 활용한 금속 3D 프린팅 소재 내의 기공 형태 분류)

  • Kim, Eun-Ah;Kwon, Se-Hun;Yang, Dong-Yeol;Yu, Ji-Hun;Kim, Kwon-Ill;Lee, Hak-Sung
    • Journal of Powder Materials
    • /
    • v.28 no.3
    • /
    • pp.208-215
    • /
    • 2021
  • Metal three-dimensional (3D) printing is an important emerging processing method in powder metallurgy. There are many successful applications of additive manufacturing. However, processing parameters such as laser power and scan speed must be manually optimized despite the development of artificial intelligence. Automatic calibration using information in an additive manufacturing database is desirable. In this study, 15 commercial pure titanium samples are processed under different conditions, and the 3D pore structures are characterized by X-ray tomography. These samples are easily classified into three categories, unmelted, well melted, or overmelted, depending on the laser energy density. Using more than 10,000 projected images for each category, convolutional neural networks are applied, and almost perfect classification of these samples is obtained. This result demonstrates that machine learning methods based on X-ray tomography can be helpful to automatically identify more suitable processing parameters.

Evaluation of the accuracy of dental casts manufactured with 3D printing technique in the All-on-4 treatment concept

  • Hilin, Tas;Fatih, Demirci;Mesut, Tuzlali;Erkan, Bahce;Guler Yildirim, Avcu
    • The Journal of Advanced Prosthodontics
    • /
    • v.14 no.6
    • /
    • pp.379-387
    • /
    • 2022
  • PURPOSE. The aim of this study is to compare the casts obtained by using conventional techniques and liquid crystal display (LCD) three-dimensional (3D) print techniques in the All-on-4 treatment concept of the edentulous mandibular jaw. MATERIALS AND METHODS. In this study, a completely edentulous mandibular acrylic cast (typodont) with bone-level implants placed with the Allon-4 technique served as a reference cast. In this typodont, impressions were taken with the conventional technique and dental stone casts were obtained. In addition, after scanning the acrylic cast in a dental laboratory scanner and obtaining the Standard Tessellation Language (STL) data, 3D printed casts were manufactured with a 3D printing device based on the design. The stone and 3D printed casts were scanned in the laboratory scanner and STL data were obtained, and then the interimplant distances were measured using Geomagic Control X v2020 (3D Systems, Rock Hill, SC, USA) analysis software (n = 60). The obtained data were statistically evaluated with one-way analysis of variance (ANOVA) and Tukey's pairwise comparison tests. RESULTS. As a result of the one-way ANOVA test, it was determined that the stone casts, 3D printed casts, and reference cast values in all distance intervals conformed to the normal distribution and these values had a significant difference among them in all distance intervals. In Tukey pairwise comparison test, significant differences were found between casts at all distance intervals. In all analyses, the level of significance was determined as .05. CONCLUSION. 3D printed casts obtained with a 3D LCD printing device can be an alternative to stone casts when implants are placed in edentulous jaws. [J Adv Prosthodont 2022;14:379-87]

Creating protective appliances for preventing dental injury during endotracheal intubation using intraoral scanning and 3D printing: a technical note

  • Cho, Jin-Hyung;Park, Wonse;Park, Kyeong-Mee;Kim, Seo-Yul;Kim, Kee-Deog
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.17 no.1
    • /
    • pp.55-59
    • /
    • 2017
  • Digital dentistry has influenced many dental procedures, such as three-dimensional (3D) diagnosis and treatment planning, surgical splints, and prosthetic treatments. Patient-specific protective appliances (PSPAs) prevent dental injury during endotracheal intubation. However, the required laboratory work takes time, and there is the possibility of tooth extraction while obtaining the dental impression. In this technical report, we utilized new digital technology for creating PSPAs, using direct intraoral scanners and 3D printers for dental cast fabrication.