• Title/Summary/Keyword: 3-dimensional printing

Search Result 286, Processing Time 0.029 seconds

CO Adsorption on Three-Dimensional and Multilayered Platinum Electrode Prepared through Transfer Printing (전사 인쇄에 의한 3D와 다층의 Pt 전극의 CO가스 흡착)

  • Jeong, Yoon-Seo;Choi, You-Jeong;Shin, Jeong-Hee;Jeong, Young-Hun;Paik, Jong-Hoo;Yoon, Dae-Ho;Cho, Jeong-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.4
    • /
    • pp.232-236
    • /
    • 2020
  • Three-dimensional (3D) multilayered Pt electrodes were fabricated to develop a porous electrode using a pattern-transfer printing process. The Pt thin films were deposited using a transferred sputtering pattern having a 250 nm line width on the substrate, and the uniform line patterns were efficiently transferred using our proposed method. Temperature-programmed desorption (TPD) analyses were used to evaluate the porosity of the electrodes. It was possible to distinguish between two resolved maxima at 168 and 227 ℃, which could be described in terms of desorption reactions on the Pt (111) planes. The results of the TPD analysis of the 3D and multilayered Pt electrodes prepared through transfer printing were compared to those of an electrode fabricated through screen printing using a commercial Pt-carbon paste commonly used as porous electrodes. It was confirmed that the 3D multilayered electrodes exhibited a desorption concentration approximately 100 times higher than that of the Pt-carbon composite electrode, and the desorption concentration increased by approximately 0.02 mg/mol per layer. The 3D multilayered electrode effectively functions as a porous electrode and a catalyst.

Do-It-Yourself (DIY) manufacture of a Nano-LC MALDI spotter robot using 3D printing technology

  • Lee, Jae-ung;Oh, Han Bin
    • Analytical Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.167-173
    • /
    • 2017
  • In the era of the forth Industrial Revolution, open source code and open source hardware have gained much attention. In particular, 3D printing technology is expanding into the realms of classical science, technology and our daily lives. Relatedly, in the present study, we demonstrate the manufacture of a nano-LC MALDI spotter robot using 3D printing technology. The parts of the spotter robot were either made using a 3D printer or purchased as 3D printer parts from the 3D printer online market, so that anyone can make the robot without a deep knowledge of engineering or electronics, i.e., DIY (do-it-yourself) product. In the nano-LC MALDI spotter, the nano-LC eluent and MALDI matrix were mixed in a T-union and discharged from the capillary outlet. The eluent and matrix mixture could be spotted onto the movable MALDI plate. The MALDI plate was designed to translate in a two-dimensional space (xy plane), which was enabled by the movements of two stepper motors. In the paper, all computer-aided design (CAD) files for the parts and operation software are provided to help the reader manufacture their own spotter robot.

A Surface Treatment Technique for Interim Crown Fabricated by Three-Dimensional Printing with Digital Light-Processing Technology

  • Son, Keunbada;Lee, Jaesik;Lee, Kyu-Bok
    • Journal of Korean Dental Science
    • /
    • v.14 no.2
    • /
    • pp.79-89
    • /
    • 2021
  • Purpose: The technique introduced in this study describes a technique for surface treatment that applies a photocuring resin to the surface of an interim crown fabricated by three-dimensional (3D) printing without a conventional polishing method. The purpose of this study was to evaluate marginal and internal fit and the intaglio surface trueness of interim crowns after surface treatment of 3D-printed crowns for clinical application. Materials and Methods: An interim crown was fabricated using a 3D printer with digital light-processing technology, and the surface support was removed. After the posttreatment process, the resin was thinly applied to the surface of the interim crown and polymerized to solve the esthetic problem of the surface without the conventional polishing process. In addition, the marginal and internal fits were measured to verify the clinical use of this technique, and the trueness was evaluated to confirm the deformation of the inner surface according to the technical application of the outer surface of the interim crown. The difference before and after the evaluation by a statistical method was verified using an independent t-test (α=0.05). Result: There was no significant difference in the marginal and internal fit before and after the application of this technique (P>0.05). There was no significant difference in intaglio surface trueness before and after the application of this technique (P=0.963). Conclusion: There was no change in the marginal and internal fit or in intaglio surface trueness of the interim crowns to which this technology was applied. This surface treatment technique is a more convenient method for interim crowns fabricated using 3D-printing technology without the conventional polishing process.

A Preliminary Study on the Application of Three-Dimensional (3D) Printing Technologies to Hot Bulk Forming Processes - Example of Preform Design and Investigation of Hot-working Tool Steel Deposited Surface (3 차원 프린팅 기술의 열간 체적 성형 공정 적용에 관한 기초 연구 - 예비형상 설계 예 및 열간 금형강으로 적층된 표면 특성 분석)

  • Ahn, Dong-Gyu;Kim, Se-Hun;Lee, Ho-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.12
    • /
    • pp.1093-1100
    • /
    • 2014
  • The goal of this paper is to investigate preliminary the applicability of 3D printing technologies for the development of the hot bulk forming process and die. 3D printing technology based on the plastic material was applied to the preform design of the hot forging process. Plastic hot forging dies were fabricated by Polyjet process for the physical simulation of the workpiece deformation. The feasibility of application of Laser-aided Direct Metal Rapid Tooling (DMT) process to the fabrication of the hot bulk metal forming die was investigated. The SKD61 hot-working tool steel was deposited on the heat treated SKD61 using the DMT process. Fundamental characteristics of SKD 61 hot-working tool steel deposited specimen were examined via hardness and wear experiments as well as the observation of the morphology. Using the results of the examination of fundamental characteristics, the applicability of the DMT process to manufacture hot bulk forming die was discussed.

Fabrication of Poly(3,4-ethylenedioxythiopene) Patterns using Vapor Phase Polymerization

  • Jo, Bo-Ram;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.265.2-265.2
    • /
    • 2013
  • We fabricate poly(3,4-ethylenedioxythiopene patterns using liquid-bridge-mediated nanotransfer (LB-nTM) printing via vapor phase polymerization (VPP). LB-nTM printing method can simultaneously enable the synthesis, alignment and patterning of the nanowires from molecular ink solutions. Two- or three-dimensional complex structures of VPP-PEDOT were directly fabricated over a large area using many types of molecular inks. VPP method is a versatile technique that can be used to obtain highly conducting coatings of conjugated polymer on both conducting and non-conducting substrates. The PEDOT patterns has analyzed crystallinity from X-ray diffraction pattern and select-area diffraction patterns. In addition, the PEDOT pattern has high conductivity compared other conducting polymers.

  • PDF

A Study on the Characteristics of 3D Printing Jewelry Design Utilizing with Fractal Geometry (프랙탈 기하학을 적용한 프린팅 주얼리 디자인 3D 특성)

  • Choi, Kyunghee
    • Journal of Fashion Business
    • /
    • v.21 no.5
    • /
    • pp.136-150
    • /
    • 2017
  • 3D printing has grown tremendously as the most noteworthy new technology in the manufacturing industries. In addition, the rapid development of computer science technology with 3D printing has created a new paradigm called Fractal Geometry, or a new form of digital art. This study explores the formative characteristics of 3D printing jewelry based on presentation of fractal geometry by classification of 3D printing jewelry's morphological types that except for producible shape with traditional mold manufacturing methods. The results of the study are as follows. The morphological characteristics of 3D printed jewelry are divided into their constitutive shapes by the repetition of the unit. The organic shape determined by superposition or overlapping, the systematic shape by distortion caused by distortion, and the variation in scaling by scaling. The formative characteristics, which are drawn from a study on the shape expression of 3D printed jewelry design using fractal geometry, consist of continuity, geometrical characteristics, and exaggeration. Continuity creates a new and self-assigned new space through a recursive structure through a cyclic structure that is formed along a single directional basis. The geometry of the geometry forms a three-dimensional and constructive structure comprised of the same size and structure of the same sized unit under the mathematical order of the geometry of Fractal's geometry. Exaggeration demonstrates the informal beauty and the maximization of the shape by expanding the scaling or superposition of a unit, by scaling the scale or he distortion of the units.

A Proposal of 3D Printing Service Platform for Construction Industry through case analysis (사례 분석을 통한 건설 3D 프린팅 서비스 플랫폼 제안)

  • Kim, Jongsung;Kim, Sun-Kyum;Seo, Myoung-Bae;Kim, Tae-Hoon;Ju, Ki-Beom
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.53-61
    • /
    • 2017
  • Recently, there has been an increase in the number of web-based three-dimensional (3D) printing-related service platforms, which allow consumers to collect 3D modeling data, make requests for production, and receive goods through a distribution service using the service platform. The application of 3D printing technology has been expanded to the construction field, yet no guidelines for the related service platform or operation examples can be found. Therefore, the functions of 10 web-based 3D printing service platforms actively used in other industries were investigated and analyzed in this study, and the analysis results were used as a guideline to develop a 3D printing service platform for the construction industry. In addition, the design, construction and distribution services to be equipped with the construction 3D printing service integration platform were presented by creating the driving scenario of the platform. As 3D printing technology develops, the overall construction and architectural paradigms for design, construction and distribution will change. To prepare for such changes and to pioneer the digital construction market in the future, the role of the 3D printing service platform is expected to increase continually.

Digital impression taking for full-arch implant restoration to a patient with microstomia (디지털 인상채득을 이용한 소구증을 가진 환자의 전악 임플란트 수복)

  • Shim, Ji Suk;Ryu, Jae Jun
    • The Journal of the Korean dental association
    • /
    • v.56 no.11
    • /
    • pp.616-621
    • /
    • 2018
  • This clinical case highlights the failure of long length implants, and the prosthodontic procedures necessary to rehabilitate the maxillary dentition of a patient with microstomia. The integrated digital technology of intra-oral scanning, computer-aided design, and three-dimensional printing can provide an alternative method to make conventional impressions for patients with microstomia who cannot insert the appropriate tray in their mouths.

  • PDF

Three-Dimensional Skin Tissue Printing with Human Skin Cell Lines and Mouse Skin-Derived Epidermal and Dermal Cells

  • Jin, Soojung;Oh, You Na;Son, Yu Ri;Kwon, Boguen;Park, Jung-ha;Gang, Min jeong;Kim, Byung Woo;Kwon, Hyun Ju
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.2
    • /
    • pp.238-247
    • /
    • 2022
  • Since the skin covers most surfaces of the body, it is susceptible to damage, which can be fatal depending on the degree of injury to the skin because it defends against external attack and protects internal structures. Various types of artificial skin are being studied for transplantation to repair damaged skin, and recently, the production of replaceable skin using three-dimensional (3D) bioprinting technology has also been investigated. In this study, skin tissue was produced using a 3D bioprinter with human skin cell lines and cells extracted from mouse skin, and the printing conditions were optimized. Gelatin was used as a bioink, and fibrinogen and alginate were used for tissue hardening after printing. Printed skin tissue maintained a survival rate of 90% or more when cultured for 14 days. Culture conditions were established using 8 mM calcium chloride treatment and the skin tissue was exposed to air to optimize epidermal cell differentiation. The skin tissue was cultured for 14 days after differentiation induction by this optimized culture method, and immunofluorescent staining was performed using epidermal cell differentiation markers to investigate whether the epidermal cells had differentiated. After differentiation, loricrin, which is normally found in terminally differentiated epidermal cells, was observed in the cells at the tip of the epidermal layer, and cytokeratin 14 was expressed in the lower cells of the epidermis layer. Collectively, this study may provide optimized conditions for bioprinting and keratinization for three-dimensional skin production.

A Study on the Cellulose Blend Knit Fabrics using Burn-out Printing Convergence Technology (셀룰로오스 혼방 니트 편포의 착색번아웃 날염복합기술에 관한 연구)

  • Cho, Ho-Hyun;Chung, Myung-Hee;Lee, Jong-Lyel
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.16 no.4
    • /
    • pp.229-235
    • /
    • 2014
  • This study conducted a research on burn-out printing convergence technology for cellulose blend knit fabrics. Printing technology, which forms color pattern on the fabric, can be generally classified into four according to printer or printing method, e.g. screen printing, roller printing, rotary printing, digital printing. However, these printing methods are flat in design or pattern, which have limitation to overcome monotonousness of fabric, so that recently burn-out process method, which expresses three-dimensional pattern effect by treating chemical on the surface of fabric as the method to appeal its esthetics to the customers. Particularly, in case of cellulose/polyester composite material, first, it is proceeded in 2 processes, by dyeing cellulose or polyester fabric and burning out cellulose fabric, in this process, due to pollution caused by disperse dye migration, color of polyester fabric part could be discolored, which has high falt risk. This research considered coloring burn-out technique, which simultaneously proceed dyeing and burn-out by reducing dyeing and burn-out process to 1 stage, which were proceeded in 2 stages previously. As the research result, it was confirmed that reasonable depth of roller was 0.04~0.06mm in roller printing process, heat treatment condition of burn-out far-infrared radiation was $185^{\circ}C{\times}30m/min$. Color fastness to washing was confirmed to be 4-5 grade, color fastness to rubbing, 3-4 grade, color fastness to light, 4 grade. Also, it was confirmed that energy reduction effect appeared 38.19%, in case of energy cost per yard compared to the existing production, also, 19.74%, in case of production cost.

  • PDF