• Title/Summary/Keyword: 3-component load cell

Search Result 17, Processing Time 0.022 seconds

Design and Strain Analysis of Precision 3-component Load Cell (정밀 3분력(Fz, Fy, Mz) 로드셀의 설계 및 변형률해석)

  • Kim, Gab-Soon;Rhee, Se-Hun;Um, Ki-Woan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.3 s.96
    • /
    • pp.222-232
    • /
    • 1999
  • This paper describes the development of a precision 3-component load cell with plate beams which may be used for measuring forces Fx, Fy and moment Mz simultaneously in industry. We have derived equations to predict the bending strains on the surface of the beams under forces or moment. We have also determined the attachment location of strain gages of each sensor and fabricated 3-component load cell. To evaluate the rated strain and interference error of each sensor, we have carried out characteristic test of precision 3-component load cell. It reveals that the rated strain calculated from the derived equations are good agreement with the results from Finite Element Method analysis.

  • PDF

Design and Strain Analysis of Precision 3-component Load Cell

  • Kim, Gab-Soon;Rhee, Se-Hun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.1 no.1
    • /
    • pp.22-32
    • /
    • 2000
  • This paper describes the development of a precision 3-component load cell with plate beams which may be used for measuring forces Fx, Fy and moment Mz simultaneously in industry. The equations to predict the bending strains on the surface of the beams under forces or moment are derived, the attachment location of strain gages of each sensor is determined, and 3-component load cell is carried out. It reveals that the rated strain calculated from the derived equations are good agreement with the results from Finite Element Method analysis.

  • PDF

Design of sensing element for 3-component load cell using parallel plate structure (병렬판구조를 이용한 3분력 로드셀 감지부의 설계)

  • Kim, Gap-Sun;Kang, Dae-Im;Jeong, Su-Yeon;Joo, Jin-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.11
    • /
    • pp.1871-1884
    • /
    • 1997
  • This paper describes the design process of a 3-component load cell with a multiple parallel plate structure which may be used to measure transverse forces and twisting moment simultaneously. Also we have derived equations to predict the bending strains on the surface of the beams in the multiple parallel plate structure under transverse force or twisting moment. It reveals that the bending strains calculated from the derived equations are in good agreement with the results from finite element analysis and experiment. Also we have evaluated the rated output and interference error of each component, which can be efficiently used to design a 3-component load cell with a multiple parallel plate structure.

Development of 6-component Force/Moment Calibration Machine (6분력 힘/모멘트 교정기의 개발)

  • 김갑순;강대임
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.9
    • /
    • pp.127-134
    • /
    • 1998
  • This paper describes the design of a 6-component force/moment calibration machine with having the maximum capacities of 500 N in forces and 50 Nm in moments. To be used for the characteristic of a multi-component load cell. this machine consists of a body, a fixture, a force generating system, a moment generating system and weights. We have also evaluated the accuracy of the calibration machine. Test results show that the expanded relative uncertainty for force components $\pmFx,\;\pmFy\;and\;moment\;components\;\pmMx,\;\pmMy\;are\;less\; than\;8.6\times10^{-4}$, and force components +Fz, -Fz and moment components $\pmMz\;is\;less\;than\;1.6\times10^{-3},\;2.0\times10^{-5},\;1.7\times10^{-3}$ respectively.

  • PDF

Experimental Study on Impact Loads Acting on Free-falling Modified Wigley

  • Hong, Sa-Young;Kim, Young-Shik;Kyoung, Jo-Hyun;Hong, Seok-Won;Kim, Yong-Hwan
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.3
    • /
    • pp.151-159
    • /
    • 2012
  • The characteristics of an impact load and pressure were experimentally investigated. Drop tests were carried out using a modified Wigley with CB = 0.56. The vertical force, pressures, and vertical accelerations were measured. A 6-component load cell was used to measure the forces, piezo-electric sensors were used to capture the impact pressure, and strain-gauge type accelerometers were used to measure the vertical accelerations. A 50-kHz sampling rate was applied to capture the peak values. The repeatability of the measured data was confirmed and the basic characteristics of the impact load and pressure such as the linearity to the falling height were observed for all of the measurements. A simple formula was derived to extract the physical impact load from the measured force based on a simple mass-sensor-mass diagram, which was validated by comparing impact forces with existing data using the mathematical model of Faltinsen and Chezhian (2005). The effects of the elasticity of the model and change in acceleration during the water entry were investigated. It is interesting to observe that the impact loads occurred and reached peak values at the same time duration after water entry for all drop heights.

Development of New Experimental Devices and Methods to Measure Shaft Forces of Ships (새로운 축기진력 계측시스템 및 모형 실험법 개발)

  • Lee, Young-Jin;Rhyu, Seong-Sun;Lee, Kyung-Jun;Seo, Jong-Soo;Lew, Jae-Moon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.3
    • /
    • pp.138-144
    • /
    • 2013
  • New experimental devices and methods to measure shaft forces of ships are proposed in this paper. The strain gauge type six-component load cell was newly designed and installed to the end of the propeller shaft. The signals generated from the sensor in the propeller rotating are transferred to the new data amplifying and processing board on the shaft and the data is transmitted to the self-made wireless receiver. To find out the characteristics of shaft forces during port and starboard turning motions in sea trial, oblique and combined yaw maneuvering tests at straight, transient, maximum yaw rate, steady conditions were performed with the model ship installed the shaft forces measuring device using circular motion tester of Samsung Ship Model Basin. Characteristics of the measured shaft forces in model tests show quantitatively good agreement with the computed values obtained by the CFD programs using the measured wake data in oblique towing conditions. In the near future, It is hoped that the estimated shaft forces for a ship from this experimental method could be validated through comparison with directly measured values of a ship.

An Experimental Study on Dynamic Test of Linear Induction Motor( II ) (선형유도전동기의 동특성에 대한 실험적 연구( II ))

  • Kim, Bong-Seop;Chung, Hyun-Kap;Cho, Hung-Je
    • Proceedings of the KIEE Conference
    • /
    • 1997.07a
    • /
    • pp.57-63
    • /
    • 1997
  • In this paper we report test results of the dynamic characteristics of the linear induction motor(LIM) used for propulsion of the UTM-01. To test a vehicle scale LIM, we manufactured a bogie type sled propelled by LIM. In this report, the LIM end effects for both cases when the vehicle is at rest and when the vehicle is running were measured and compared with the calculations. The LIM thrust and the vertical forces were measured by the 3-component load cell and the results were compared with the calculations from measured vertical load and vehicle velocity.

  • PDF

Characteristics of Current Collection Signals during Test Run of High-speed Train (주행 중 발생하는 고속전철 집전계 신호의 특성)

  • 이시우;김정수;조용현;최강윤
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.3
    • /
    • pp.232-238
    • /
    • 2004
  • The dynamic characteristics of the current collection process of the high-speed railway are investigated through signals acquired during a test run. The signals are obtained from accelerometers, load cells, and strain gauges attached to various positions of the pantograph, and they are processed in time-and frequency-domains to obtain the dynamic characteristics. The main natural frequency of the pantograph is found to be 8.5Hz. There also are components at low frequencies varying linearly with the train speed. The contact frequency components above 20Hz is attenuated as they pass through the secondary suspension. The main frequency component of the load cell signal is found to be related with the rolling motion of the panhead generated by the stagger in the catenary.

Study on visualization of vortex flow on hydrofoils (수중익에서 발생하는 보텍스 유동 가시화 연구)

  • Hong, Ji-Woo;Ahn, Byoung-Kwon
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.2
    • /
    • pp.48-55
    • /
    • 2021
  • In order to design a propeller with high efficiency and excellent cavitation performance, theoretical and experimental studies on the cavitation and noise characteristics according to the blade section shape are essential. In general, sheet cavitation, bubble cavitation, and cloud cavitation are the main causes of hull vibration and propeller surface erosion. However vortex cavitation, which has the greatest influence on the noise level because the fastest CIS in ship propeller, has been researched for a long time and studies have been conducted recently to control it. In this experiment, the development process of cavitation was measured by using three dimensional wings with two different wing section and wing tip shapes, and the noise level at that time was evaluated. In addition, we evaluated the relationship between cavitation inception and hydrodynamic force using three component load cell and we measured the velocity field of wing wake using LDV.

Improved Bridgeless Interleaved Boost PFC Rectifier with Optimized Magnetic Utilization and Reduced Sensing Noise

  • Cao, Guoen;Kim, Hee-Jun
    • Journal of Power Electronics
    • /
    • v.14 no.5
    • /
    • pp.815-826
    • /
    • 2014
  • An improved bridgeless interleaved boost power factor correction (PFC) rectifier to improve power efficiency and component utilization is proposed in this study. With combined conventional bridgeless PFC circuit and interleaved technology, the proposed rectifier consists of two interleaved and magnetic inter-coupling boost bridgeless converter cells. Each cell operates alternatively in the critical conduction mode, which can achieve the soft-switching characteristics of the switches and increase power capacity. Auxiliary blocking diodes are employed to eliminate undesired circulating loops and reduce current-sensing noise, which are among the serious drawbacks of a dual-boost PFC rectifier. Magnetic component utilization is improved by symmetrically coupling two inductors on a unique core, which can achieve independence from each other based on the auxiliary diodes. Through the interleaved approach, each switch can operate in the whole line cycle. A simple control scheme is employed in the circuit by using a conventional interleaved controller. The operation principle and theoretical analysis of the converter are presented. A 600 W experimental prototype is built to verify the theoretical analysis and feasibility of the proposed rectifier. System efficiency reaches 97.3% with low total harmonic distortion at full load.