• Title/Summary/Keyword: 3-axis robot

Search Result 166, Processing Time 0.024 seconds

A Research on Ball-Balancing Robot (볼 벨런싱 로봇에 관한 연구)

  • Kim, Ji-Tae;Kim, Dae-young;Lee, Won-Joon;Jin, Tae-Seok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.463-466
    • /
    • 2017
  • The purpose of this paper is to develop a module capable of all-directional driving different from conventional wheeled robots, and to solve the problems of the conventional mobile robot with side driving performance degradation, It is possible to overcome the disadvantages such as an increase in the time required for the unnecessary driving. The all - direction spherical wheel drive module for driving a ball - balancing robot is required to develop a power transfer mechanism and a driving algorithm for driving the robot in all directions using three rotor casters. 3DoF (Axis) A driver with built-in forward motion algorithm is embedded in the module and a driving motor module with 3DoF (axis) for driving direction and speed is installed. The movement mechanism depends on the sum of the rotation vectors of the respective driving wheels. It is possible to create various movement directions depending on the rotation and the vector sum of two or three drive wheels. It is possible to move in different directions according to the rotation vector field of each driving wheel. When a more innovative all-round spherical wheel drive module for forward movement is developed, it can be used in the driving part of the mobile robot to improve the performance of the robot more technically, and through the forward-direction robot platform with the drive module Conventional wheeled robots can overcome the disadvantage that the continuous straightening performance is lowered due to resistance to various environments. Therefore, it is necessary to use a full-direction driving function as well as a cleaning robot and a mobile robot applicable in the Americas and Europe It will be an essential technology for guide robots, boarding robots, mobile means, etc., and will contribute to the expansion of the intelligent service robot market and future automobile market.

  • PDF

A MEMS Z-axis Microaccelerometer for Vertical Motion Sensing of Mobile Robot (이동 로봇의 수직 운동 감지를 위한 초소형 MEMS Z축 가속도계)

  • Lee, Sang-Min;Cho, Dong-Il Dan
    • The Journal of Korea Robotics Society
    • /
    • v.2 no.3
    • /
    • pp.249-254
    • /
    • 2007
  • 본 논문에서는 웨이퍼 레벨 밀봉 실장된 수직 운동 가속도 신호를 감지할 수 있는 초소형 Z축 가속도 센싱 엘리먼트를 제작하였다. 초소형 Z축 가속도 센싱 엘리먼트는 수직 방향의 정전용량 변화를 필요로 하기 때문에 단일 기판상에 수직 단차의 형성을 가능케 하는 확장된 희생 몸체 미세 가공 기술 (Extended Sacrificial Bulk Micromachining, ESBM) 을 이용하여 제작되었다. 확장된 희생 몸체 미세 가공 기술을 이용하면 정렬오차가 없이 상하부 양쪽에 수직 단차를 갖는 실리콘 구조물의 제작이 가능하다. 또한, MEMS 센싱 엘리먼트의 부유된 실리콘 구조물을 보호하기 위하여 웨이퍼 레벨 밀봉 실장 기술이 적용하여 고신뢰성, 고수율, 고성능의 Z축 가속도 센서를 제작하였다. 신호 처리 회로와 가속도 센서를 결합하여 Z축 가속도 센싱 시스템을 제작하였고 운동가속도 범위 10 g 이상, 정지 드리프트 17.3 mg 그리고 대역폭 60 Hz 이상의 성능을 나타내었다.

  • PDF

Localization Performance Improvement for Mobile Robot using Multiple Sensors in Slope Road (경사도로에서 다중 센서를 이용한 이동로봇의 위치추정 성능 개선)

  • Kim, Ji-Yong;Lee, Ji-Hong;Byun, Jae-Min;Kim, Sung-Hun
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.1
    • /
    • pp.67-75
    • /
    • 2010
  • This paper presents localization algorithm for mobile robot in outdoor environment. Outdoor environment includes the uncertainty on the ground. Magnetic sensor or IMU(Inertial Measurement Unit) has been used to estimate robot's heading angle. Two sensor is unavailable because mobile robot is electric car affected by magnetic field. Heading angle estimation algorithm for mobile robot is implemented using gyro sensor module consisting of 1-axis gyro sensors. Localization algorithm applied Extended Kalman filter that utilized GPS and encoder, gyro sensor module. Experiment results show that proposed localization algorithm improve considerably localization performance of mobile robots.

Controlling a lamprey-based robot with an electronic nervous system

  • Westphal, A.;Rulkov, N.F.;Ayers, J.;Brady, D.;Hunt, M.
    • Smart Structures and Systems
    • /
    • v.8 no.1
    • /
    • pp.39-52
    • /
    • 2011
  • We are developing a biomimetic robot based on the Sea Lamprey. The robot consists of a cylindrical electronics bay propelled by an undulatory body axis. Shape memory alloy (SMA) actuators generate propagating flexion waves in five undulatory segments of a polyurethane strip. The behavior of the robot is controlled by an electronic nervous system (ENS) composed of networks of discrete-time map-based neurons and synapses that execute on a digital signal processing chip. Motor neuron action potentials gate power transistors that apply current to the SMA actuators. The ENS consists of a set of segmental central pattern generators (CPGs), modulated by layered command and coordinating neuron networks, that integrate input from exteroceptive sensors including a compass, accelerometers, inclinometers and a short baseline sonar array (SBA). The CPGs instantiate the 3-element hemi-segmental network model established from physiological studies. Anterior and posterior propagating pathways between CPGs mediate intersegmental coordination to generate flexion waves for forward and backward swimming. The command network mediates layered exteroceptive reflexes for homing, primary orientation, and impediment compensation. The SBA allows homing on a sonar beacon by indicating deviations in azimuth and inclination. Inclinometers actuate a bending segment between the hull and undulator to allow climb and dive. Accelerometers can distinguish collisions from impediment to allow compensatory reflexes. Modulatory commands mediate speed control and turning. A SBA communications interface is being developed to allow supervised reactive autonomy.

Improvement of learning performance and control of a robot manipulator using neural network with adaptive learning rate (적응 학습률을 이용한 신경회로망의 학습성능개선 및 로봇 제어)

  • Lee, Bo-Hee;Lee, Taek-Seung;Kim, Jin-Geol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.4
    • /
    • pp.363-372
    • /
    • 1997
  • In this paper, the design and the implementation of the adaptive learning rate neural network controller for an articulate robot, which is being developed (or) has been developed in our Automatic Control Laboratory, are mainly discussed. The controller reduces software computational load via distributed processing method using multiple CPU's, and simplifies hardware structures by the time-division control with TMS32OC31 DSP chip. Proposed neural network controller with adaptive learning rate structure using expert's heuristics can improve learning speed. The proposed controller verifies its superiority by comparing response characteristics of conventional controller with those of the proposed controller that are obtained from the experiments for the 5 axis vertical articulated robot. We, also, present the generalization property of proposed controller for unlearned trajectory and the change of load through experimental data.

  • PDF

Implementation and Performance Evaluation of Preempt-RT Based Multi-core Motion Controller for Industrial Robot (산업용 로봇 제어를 위한 Preempt-RT 기반 멀티코어 모션 제어기의 구현 및 성능 평가)

  • Kim, Ikhwan;Ahn, Hyosung;Kim, Taehyoun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.12 no.1
    • /
    • pp.1-10
    • /
    • 2017
  • Recently, with the ever-increasing complexity of industrial robot systems, it has been greatly attention to adopt a multi-core based motion controller with high cost-performance ratio. In this paper, we propose a software architecture that aims to utilize the computing power of multi-core processors. The key concept of our architecture is to use shared memory for the interplay between threads running on separate processor cores. And then, we have integrated our proposed architecture with an industrial standard compliant IDE for automatic code generation of motion runtime. For the performance evaluation, we constructed a test-bed consisting of a motion controller with Preempt-RT Linux based dual-core industrial PC and a 3-axis industrial robot platform. The experimental results show that the actuation time difference between axes is 10 ns in average and bounded up to 689 ns under $1000{\mu}s$ control period, which can come up with real-time performance for industrial robot.

A Dexterous Motion Control Method of Redundant Robot Manipulators based on Neural Optimization Networks (신경망 최적화 회로를 이용한 여유자유도 로봇의 유연 가조작 모션 제어 방법)

  • Hyun, Woong-Keun;Jung, Young-Kee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.4
    • /
    • pp.756-765
    • /
    • 2001
  • An effective dexterous motion control method of redundant robot manipulators based on neural optimization network is proposed to satisfy multi-criteria such as singularity avoidance, minimizing energy consumption, and avoiding physical limits of actuator, while performing a given task. The method employs a neural optimization network with parallel processing capability, where only a simple geometric analysis for resolved motion of each joint is required instead of computing of the Jacobian and its pseudo inverse matrix. For dexterous motion, a joint geometric manipulability measure(JGMM) is proposed. JGMM evaluates a contribution of each joint differential motion in enlarging the length of the shortest axis among principal axes of the manipulability ellipsoid volume approximately obtained by a geometric analysis. Redundant robot manipulators is then controlled by neural optimization networks in such a way that 1) linear combination of the resolved motion by each joint differential motion should be equal to the desired velocity, 2) physical limits of joints are not violated, and 3) weighted sum of the square of each differential joint motion is minimized where weightings are adjusted by JGMM. To show the validity of the proposed method, several numerical examples are illustrated.

  • PDF

Study on Three-Dimensional Curved-Surface Machining Using Industrial Articulated Robot (다관절 로봇을 이용한 3차원 곡면가공 방안에 관한 연구)

  • Jung, Chang-Wook;Noh, Tae-Yang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.9
    • /
    • pp.1071-1076
    • /
    • 2011
  • NC machines are generally used for machining operations because of their position accuracy, path accuracy, and machining reaction force. However, some NC machines require a very large space and are expensive. Recently, industrial articulated robot arms with large handling capability and wrist torque have been developed and the corresponding sensor technology has been improved. A machining robot for three-dimensional large curved objects was developed on the basis of an automatic-path-generation method. A self-position-compensation method with a laser displacement sensor was adopted for the six-axis robot developed, because the large articulated robot arms had poor position accuracy. An automatic-path-generation method using specific points was adopted to reduce the number of teaching points and time. In order to determine the proper machining conditions, various machining conditions such as tool rotation speed, cutting angle, cutting depth, and tool moving speed, were evaluated.

Coma Aberration Correction of Optical System by using a Robot Arm Type Coordinated Measuring Machine (로봇팔 타입 삼차원좌표측정기를 이용한 광학계의 비축수차 보정)

  • Chun, Ho Bin;Kim, Goeun;Song, In-Woong;Kang, Hyug-Mo;Rhee, Hyug-Gyo;Ghim, Young-Sik;Yang, Ho-Soon;Kwon, Jong Hoon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.3
    • /
    • pp.62-66
    • /
    • 2016
  • Optical system needs to be aligned before its undergoing process, is usually shows coma aberrations, which occurred due to imperfection in the lens or other components results in off-axis point sources, appearing to have a tail like a comet. There are some methods to correct coma aberration. In this paper, to correct coma aberration in optical system, using a robot arm type coordinate measuring machine(CMM). CMMs are widely used to measure the form of accuracy of parts and positioning accuracy of systems. Among them, robot arm type CMM has more advantages than the others, such as its mobility and measuring range. However, robot arm type CMM has lower accuracy than cantilever type CMM. To prove robot arm type CMM's accuracy, several factors were suggested in this paper and the final measuring results were compared to a commercial cantilever type CMM. Based on this accuracy, a typical optical system was successfully aligned by using our robot arm type CMM.

Extending the DEVS formalism toward Geometrical Kinematic Modeling and Simulation for Virtual Manufacturing Environment (가상제조환경을 위한 형상기구학 모델링 및 시뮬레이션으로의 DEVS 확장)

  • 황문호
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 1999.10a
    • /
    • pp.24-29
    • /
    • 1999
  • Proposed in this paper is a modeling and simulation methodology for a virtual manufacturing environment. Based on DEVS formalism[Zeigler 76], the proposed model, so called GKDEVS, is designed to descript the geometrical knematic structure as well as event-driven and continuous state dynamics. In terms of abstract simulation algorithm[Zeigler 84], the simulation method of GKDEVS is proposed for combined discrete-continuous simulation. Using the GKDEVS, and FMS model consisting of a turing machine, a 3-axis machine and a RGV-mounted robot is constructed and simulated.

  • PDF