Browse > Article
http://dx.doi.org/10.12989/sss.2011.8.1.039

Controlling a lamprey-based robot with an electronic nervous system  

Westphal, A. (Department of Biology and Marine Science Center, Northeastern University)
Rulkov, N.F. (Information Systems Laboratories, Inc.)
Ayers, J. (Department of Biology and Marine Science Center, Northeastern University)
Brady, D. (Department of Electrical and Computer Engineering, Northeastern University)
Hunt, M. (Ariel Inc.)
Publication Information
Smart Structures and Systems / v.8, no.1, 2011 , pp. 39-52 More about this Journal
Abstract
We are developing a biomimetic robot based on the Sea Lamprey. The robot consists of a cylindrical electronics bay propelled by an undulatory body axis. Shape memory alloy (SMA) actuators generate propagating flexion waves in five undulatory segments of a polyurethane strip. The behavior of the robot is controlled by an electronic nervous system (ENS) composed of networks of discrete-time map-based neurons and synapses that execute on a digital signal processing chip. Motor neuron action potentials gate power transistors that apply current to the SMA actuators. The ENS consists of a set of segmental central pattern generators (CPGs), modulated by layered command and coordinating neuron networks, that integrate input from exteroceptive sensors including a compass, accelerometers, inclinometers and a short baseline sonar array (SBA). The CPGs instantiate the 3-element hemi-segmental network model established from physiological studies. Anterior and posterior propagating pathways between CPGs mediate intersegmental coordination to generate flexion waves for forward and backward swimming. The command network mediates layered exteroceptive reflexes for homing, primary orientation, and impediment compensation. The SBA allows homing on a sonar beacon by indicating deviations in azimuth and inclination. Inclinometers actuate a bending segment between the hull and undulator to allow climb and dive. Accelerometers can distinguish collisions from impediment to allow compensatory reflexes. Modulatory commands mediate speed control and turning. A SBA communications interface is being developed to allow supervised reactive autonomy.
Keywords
central pattern generator; biomimetic; autonomy; electronic neurons; robotics;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
  • Reference
1 Arkin, R.C. (1998), Behavior-Based Robots, MIT Press, Cambridge, MA.
2 Ayers, J. (2004), "Underwater walking", Arthopod Struct Dev, 33(3), 347-360.   DOI   ScienceOn
3 Ayers, J., Davis, J. and Rudolph, A. J. (2002), Neurotechnology for Biomimetic Robots, MIT Press, Cambridge, MA
4 Ayers, J. and Rulkov, N. (2007), "Controlling biomimetic underwater robots with electronic nervous systems", Bio-mechanisms of Animals in Swimming and Flying. N. Kato and S. Kamimura. Tokyo, Springer-Verlag: 295-306.
5 Ayers, J., Rulkov, N, Brady, D., Hunt, M. and Westphal, A. (2008), "Controlling a lamprey-based robot with an electronic nervous system", Abs. Soc. Neurosci, 376, 21.
6 Ayers, J., Rulkov, N., Knudsen, D., Kim, Y.-B., Volkovskii, A. and Selverston, A.I. (2010), "Controlling underwater robots with electronic nervous systems", Appl. Bio. Biomech, 7(1), 57-67.   DOI   ScienceOn
7 Ayers, J. and Witting, J. (2007), "Biomimetic approaches to the control of underwater walking machines", Phil. T. R. Soc. A, 365, 273-295.   DOI   ScienceOn
8 Bi, G.Q. and Poo, M.M. (2001), "Synaptic modification by correlated activity: Hebb's postulate revisited", Annu. Rev. Neurosci., 24, 139-166.   DOI   ScienceOn
9 Brooks, R.A.A. (1986), "Robust layered control system for a mobile robot", Int. J. Robot. Autom., 2, 14-23.   DOI
10 Brooks, R.A. (1991), "New Approaches to Robotics", Science, 253(5025), 1227-1232.   DOI
11 Buchanan, J.T. and Grillner, S. (1987), "Newly identified 'glutamate interneurons' and their role in locomotion in the lamprey spinal cord", Science, 236(4799), 312-314.   DOI
12 Ekeberg, O. and Grillner, S. (1999), "Simulations of neuromuscular control in lamprey swimming", Philos T. R. Soc. B, 354(1385), 895-902.   DOI   ScienceOn
13 Hammarlund, P. and Ekeberg, O. (1998), "Large neural network simulations on multiple hardware platforms", J Comput Neurosci, 5(4), 443-59.   DOI   ScienceOn
14 Harris-Warrick, R.M. (2002), "Voltage-sensitive ion channels in rhythmic motor systems", Curr. Opin. Neurobiol., 12(6), 646-651.   DOI   ScienceOn
15 Harris-Warrick, R.M. and Marder, E. (1991), "Modulation of neural networks for behavior", Annu. Rev Neurosci, 14, 39-57.   DOI   ScienceOn
16 Hawat, R. (2008), "Hardware and Software Implementation of a Passive Ultra-short Baseline Array Sonar", Electrical Engineering, Boston, Northeastern University, Masters.
17 Katz, P.S. and Harris-Warrick, R.M. (1999), "The evolution of neuronal circuits underlying species-specific behavior", Curr. Opin. Neurobiol., 9(5), 628-633.   DOI   ScienceOn
18 Lewis, M.A., Etienne-Cummings, R., Hartmann, M.J., Xu, Z.R. and Cohen, A.H. (2003), "An in silico central pattern generator: silicon oscillator, coupling, entrainment, and physical computation", Biol. Cybern., 88(2), 137-51.   DOI   ScienceOn
19 Pinto, R.D., Varona, P., Volkovskii, A.R., Szucs, A., Abarbanel, H.D.I. and Rabinovich, M.I. (2000), "Synchronous behavior of two coupled electronic neurons", Physical review E, Statistical physics, plasmas, fluids, and related interdisciplinary topics, 62(2 Pt B), 2644-2656.   DOI   ScienceOn
20 Rabinovich, M.I., Varona, P., Selverston, A.I. and Abarbanel, H.D.I. (2006), "Dynamical principles in neuroscience", Rev. Mod. Phys., 78, 1213-1265.   DOI   ScienceOn
21 Reeve, R. and Webb, B.H. (2003), "New neural circuits for robot phonotaxis", Phil. T. R. Soc. A, 361, 2245-2266.   DOI   ScienceOn
22 Rulkov, N.F. (2002), "Modeling of spiking-bursting neural behavior using two-dimensional map", Phys. Rev. E, 65(4), 041922.   DOI
23 Stein, P.S.G., Grillner, S., Selverston, A.I. and Stuart, D. (1997), Neurons, Networks and Motor Behavior (Eds. Sejnowski, T. and Poggio), T., MIT Press, Cambridge, MA.
24 Rulkov, N.F., Timofeev, I. and Bazhenov, M. (2004), "Oscillations in large-scale cortical networks: map-based model", J. Comput. Neurosci., 17(2), 203-223.   DOI
25 Shilnikov, A.L. and Rulkov, N.F. (2003), "Origin of chaos in a two-dimensional map modeling spiking-bursting neural activity", Int. J. Bifurcat. Chaos, 13(11), 3325-40.   DOI   ScienceOn
26 Stuart, D.G. and Enoka, R. (1985), "A review of Henneman's size principle: critical issues", in The Motor System In Neurobiology, ed. Evarts, E.V., Wise, S.P. and Bousfield, D., 30-35, Elsevier Biomedical Press.
27 Taubes, G. (2000), "Biologists and engineers create a new generation of robots that imitate life", Science, 288(5463), 80-83.   DOI