• Title/Summary/Keyword: 3-Point bending

Search Result 680, Processing Time 0.031 seconds

An Experimental Study on the Precast Segmented PSC Girder with I-Shape and Box-Shape Cross-Section (I형 단면과 BOX형 단면을 갖는 프리캐스트 분절 PSC 거더의 실험적 연구)

  • Kim, Sun-Hee;Lee, Seng-Hoo;Park, Joon-Seok;Cheon, Jinuk;Yoon, Soon-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.2
    • /
    • pp.8-16
    • /
    • 2015
  • Prestressed concrete (PSC) is a method in which prestressed tendon is placed inside and/or outside the reinforced concrete member and the compressive force applied to the concrete in advance to enhance the engineering properties of concrete member which is weak under tension. In this paper we suggested the precast PSC girder assembled with segments of portable size and weight at the factory. The segments of precast PSC girder will be delivered and assembled as a unit of PSC girder at the site. Consequently, we suggested new-type of precast segmented PSC girder with different shapes of segment cross-section (i.e., I-shape, Box-shape). To mitigate the problems associated with the field splice between the segments of precast PSC girder anchor system is attached near the neutral axis of the girder and relatively uniform compression throughout the girder cross-section is applied. Prior to the experimental investigation, analytical investigation on the structural behavior of precast PSC girder was performed and the serviceability (deflection) and safety (strength) of the girder were confirmed. In addition, 4-point bending test on the girder was conducted to investigate the structural performance under bending. From the experimental investigation, it was found that the precast PSC girder spliced with 3 and 5 segments has sufficient in serviceability and safety conditions and it was also observed that the point where the segments spliced has no defects and the girder behaves as a unit.

A STUDY ON THE FRACTURE TOUGHNESS OF DENTAL COMPOSITE RESINS (치과용 복합레진의 파괴인성에 관한 실험적 연구)

  • Park, Jin-Hoon;Min, Byung-Soon;Choi, Ho-Young;Park, Sang-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.15 no.2
    • /
    • pp.17-33
    • /
    • 1990
  • The purpose of this study was to evaluate the fracture toughness of dental composite resins and to investigate the filler factor affecting the fracture behaviour on which the degree of fracture toughness depends. Six kinds of commercially available composite resin;, including two of each macrofilled, microfilled, and hybrid type were used for this study, The plane strain fracture toughness ($K_{10}$) was determined by three-point bending test using the single edge notch specimen according to the ASTM-E399. The specimens were fabricated with visible light curing or self curing of each composite resin previously inserted into a metal mold, and three-point bending test was conducted with cross-head speed of 0.1mm/min following a day's storage of the specimens in $37^{\circ}C$ distilled water. The filler volume fractions were determined by the standard ashing test according to the ISO-4049. Acoustic Emission(AE), a nondestructive testing method detecting the elastic wave released from the localized sources In material under a certain stress, was detected during three-point bending test and its analyzed data was compared with, canning electron fractographs of each specimen. The results were as follows : 1. The filler content of composite resin material was found to be highest in the hybrid type followed by the macrofilled type, and the microfilled type. 2. It was found that the value of plane strain fracture toughness of composite resin material was in the range from 0.69 MPa$\sqrt{m}$ to 1 46 MPa$\sqrt{m}$ and highest In the macrofilled type followed by the hybrid type, and the microfilled type. 3. The consequence of Acoustic Emission analysis revealed that the plane strain fracture toughness increased according as the count of Acoustic Emission events increased. 4. The higher the plane strain fracture toughness became, the higher degree of surface roughness and irregularity the fractographs demonstrated.

  • PDF

Comparison of Flexural Tensile Strength according to the Presence of Notch and Fiber Content in Ultra High Performance Cementitious Composites (노치 유무와 섬유혼입률에 따른 UHPCC의 휨인장강도 비교)

  • Kang, Su-Tae
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.5
    • /
    • pp.525-533
    • /
    • 2012
  • In this study, bending tests were performed on beam specimens made of UHPCC with the fiber content range of 0~5 vol% to investigate the contribution of fiber content to first cracking strength and flexural tensile strength. Also, four-point bending tests for unnotched beam as well as three-point bending test for notched beam were performed to estimate the effect of the presence of notch on the strengths. The experiment result showed that the increase in fiber content made linear improvement in the flexural tensile strength; whereas first cracking strength was enhanced only when at least 1 vol% of fibers was incorporated. Comparison of the bending test results with and without notch showed that the notch effect varied with the fiber content. The increase in fiber content diminished the effect of stress concentration on the notch tip, reducing the difference in the strengths. With much higher fiber content, the effect of stress concentration almost disappeared and the defection on cracking plane or the size effect dominated the strengths, consequently resulting in higher strengths in the notched beams than the unnotched ones.

Influence of nano alumina coating on the flexural bond strength between zirconia and resin cement

  • Akay, Canan;Tanis, Merve Cakirbay;Mumcu, Emre;Kilicarslan, Mehmet Ali;Sen, Murat
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.1
    • /
    • pp.43-49
    • /
    • 2018
  • PURPOSE. The purpose of this in vitro study is to examine the effects of a nano-structured alumina coating on the adhesion between resin cements and zirconia ceramics using a four-point bending test. MATERIALS AND METHODS. 100 pairs of zirconium bar specimens were prepared with dimensions of $25mm{\times}2mm{\times}5mm$ and cementation surfaces of $5mm{\times}2mm$. The samples were divided into 5 groups of 20 pairs each. The groups are as follows: Group I (C) - Control with no surface modification, Group II (APA) - airborne-particle-abrasion with $110{\mu}m$ high-purity aluminum oxide ($Al_2O_3$) particles, Group III (ROC) - airborne-particle-abrasion with $110{\mu}m$ silica modified aluminum oxide ($Al_2O_3+SiO_2$) particles, Group IV (TCS) - tribochemical silica coated with $Al_2O_3$ particles, and Group V (AlC) - nano alumina coating. The surface modifications were assessed on two samples selected from each group by atomic force microscopy and scanning electron microscopy. The samples were cemented with two different self-adhesive resin cements. The bending bond strength was evaluated by mechanical testing. RESULTS. According to the ANOVA results, surface treatments, different cement types, and their interactions were statistically significant (P<.05). The highest flexural bond strengths were obtained in nano-structured alumina coated zirconia surfaces (50.4 MPa) and the lowest values were obtained in the control group (12.00 MPa), both of which were cemented using a self-adhesive resin cement. CONCLUSION. The surface modifications tested in the current study affected the surface roughness and flexural bond strength of zirconia. The nano alumina coating method significantly increased the flexural bond strength of zirconia ceramics.

Characteristics of bending strength and residual stress distribution on high thermal cycle of ceramic and metal joint (세라믹/금속접합재의 고온 열사이클에 따른 잔류응력분포 및 굽힘강도 특성)

  • Park, Young-Chul;Hue, Sun-Chul;Boo, Myoung-Hwan;Kim, Hyun-Su;Kang, Jae-Wook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.10
    • /
    • pp.1541-1550
    • /
    • 1997
  • Since the ceramic/metal joint material is made at a high temperature, the residual stress develops when it is cooled from bonding temperature to room temperature due to remarkable difference of thermal expansion coefficient between ceramic and metal. As residual stress at ceramic/metal joints influences the strength of joints, it is important to estimate residual stress quantitatively. In this study, it is attempted to estimate joint residual stress of Si$_3$N$_4$STS304 joints quantitatively and to compare the strength of joints. The difference of residual stress is measured when repeated thermal cycl is loaded, under the conditions of the practical use of the ceramic/metal joint. The residual stress increases at 1 cycle of thermal load but decreases in 3 cycles to 10 cycles of thermal load. And 4-point bending test is performed to examine the influence of residual stress on fracture strength. As a result, it is known that the stress of joint decreases as the number of thermal cycle increases.

Analysis of the effects of operating point of tractor engine on fatigue life of PTO gear using simulation

  • Lee, Pa-Ul;Chung, Sun-Ok;Choi, Chang-Hyun;Park, Young-Jun;Kim, Yong-Joo
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.3
    • /
    • pp.441-449
    • /
    • 2016
  • Agricultural tractors are designed using the empirical method due to the difficulty of measuring precise load cycles under various working conditions and soil types. Especially, directly drives various tractor implements, the power take off (PTO) gear. Therefore, alternative design methods using gear design software are needed for the optimal design of tractors. The objective of this study is to simulate fatigue life of the PTO gear according to the operating point of the tractor engine. The PTO gear was made with SCr415 alloy steel with carburizing and quenching treatments. The fatigue life of the PTO gear was simulated by using bending and contact stress according to the torque of the load levels. The PTO gear simulation was conducted by the KISSsoft commercial software for gear analysis. Bending and contact stress were calculated by the ISO 6336:2006 Method A and B. The simulation of fatigue life was calculated by the Miner's cumulative damage law. The total fatigue life of tractors can be estimated to 3,420 hours; thus, 3,420 hours of fatigue life were used in the simulation of the PTO gear of tractors. The main simulation results showed that the maximum fatigue life of the PTO gear was infinite fatigue life at maximum engine power. Minimum fatigue life of the PTO gear was 19.61 hours at 70% of the maximum engine power. Fatigue life of the PTO gear changed according to load of tractor. Therefore, tractor work data is needed for optimal design of the PTO gear.

Structural Analysis and Failure Prediction of Tape-Wrapped Structures (테이프래핑 구조물의 구조 해석 및 파단 예측)

  • Goo, Nam-Seo;Park, Hoon-Cheol;Yoon, Kwang-Joon;Lee, Yeol-Hwa
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.3
    • /
    • pp.17-21
    • /
    • 2004
  • Tape-wrapped structures have been generally used in nozzle parts of guided missiles. A continuous band of woven composite material is wrapped around a mandrel that is designed to produce real products. After going through a vacuum bagging process, this woven composite material is cured in a high-pressure autoclave or hydroclave. However, tape-wrapped structures are difficult to analyze because of its large thickness and inclined lay-up. The present study investigates the method of analysis and failure prediction of tape-wrapped structures. The four-point bending test and its finite element analysis were performed to study how to model tape-wrapped structures and investigate their failure characteristics.

The Effect of SiC Powder Size at Reaction Bonded SiC Composite Fabricated by a Molten Si Infiltration Method (용융 Si 침윤법에 의해 제조된 반응소결 탄화규소 복합체에서 SiC 입자 크기의 영향)

  • Yun, Sung-Ho;Cho, Kyung-Sun;Tan, Phang Nhun;Cheong, Hun;Kim, Young-Do;Park, Sang-Whang
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.8
    • /
    • pp.486-492
    • /
    • 2008
  • Reaction bonded silicon carbide(RBSC) composite for heat-exchanger was fabricated by molten Si infiltration method. The raw materials with variable particle sizes were used in this experience. The finer the particle size in sintered silicon carbide was the more increasing 3-point bending strength and fracture toughness. As the adaptable particle sizes had been occupied interstice arising from packing sample, the mechanical properties were increased. In the PCS1-1 sample, the 3-point bending strength and fracture toughness were 323MPa and $4.9\;MPa{\cdot}m^{1/2}$, respectively.

Bonding Stress Analysis of Cable Fairings used in Small Guided Missiles and Strength Tests of Bonding Materials (유도무기 케이블 페어링의 강도 해석 및 접착재 강도 시험)

  • Goo, N.-S.;Yoo, K.-J.;Shin, Y.-S.;Lee, Y.-H.;Cheong, H.-Y.;Kim, B.-H.
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.6
    • /
    • pp.76-82
    • /
    • 2005
  • Cable fairings of guided missiles are generally used for protection of electric cables under aerodynamic heating and mechanical loading. The stress distributions between a cable fairing and missile main body along a cable fairing are necessary for its design. In this paper, a method for bonding stress and strength analysis of a cable fairing has been investigated and its computer program developed. Tensile and three-point bending tests of generally used bonding materials were also conducted to supply basic material properties for design of cable fairings.

The effect of oxidation heat treatment on porcelain to metal bond strength (도재용착주조관용 비귀금속 합금의 사전 열처리가 도재-금속의 결합 강도에 미치는 효과)

  • Kim, C.Y.;Nam, S.Y.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.05
    • /
    • pp.43-46
    • /
    • 1997
  • The interfacial bond strength and microstructural analysis of pre-heat treated porcelain-fused-metal (PFM) were investigated using a mechanical three-point bending tester and scanning electron microscope(SEM). Four kinds of heat treated samples were prepared as follows; A: heating $1200^{\circ}F\rightarrow1600^{\circ}F$, holding 1min, reheating $\rightarrow1850^{\circ}F$, hold 3min under vacuum, B: heating $1200^{\circ}F\rightarrow1600^{\circ}F$ holding 1min, reheating $\rightarrow1850^{\circ}F$ under vacuum condition, C: heating $1200^{\circ}F\rightarrow1600^{\circ}F$, holding 1min, reheating $\rightarrow1850^{\circ}F$, holding 3min in the air, repeat same heat treatment process under vacuum condition, D: heating $1200^{\circ}F\rightarrow1600^{\circ}F$, holding 1min, reheating $\rightarrow1850^{\circ}F$, holding 1min in the air. The three-point bending test results shows that the interfacial bond strength of specimen B and C were higher than that of A and B. The SEM study reveals that Specimen C shows the highest surface density.

  • PDF