• Title/Summary/Keyword: 3-Hexylthiophene

Search Result 128, Processing Time 0.041 seconds

Photopatternable Conducting Polymer Nanocomposite with Incorporated Gold Nanoparticles for Use in Organic Field Effect Transistors

  • Huh, Sung;Choi, Hyun-Ho;Cho, Kil-Won;Kim, Seung-Bin
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.4
    • /
    • pp.1128-1134
    • /
    • 2012
  • We investigated a new method for patterning organic field-effect transistors (OFETs) using a photopatternable conducting polymer nanocomposite, consisting of poly(3-hexylthiophene) (P3HT)-coated gold nanoparticles (AuNPs) that had been modified with a photoreactive cinnamate group, to form P3HT-AuNP-CI. We found that the addition of the cinnamate group to the nanoparticle surface assisted the preparation of a solvent-resistive semiconducting film and preserved the P3HT ordering, which was interrupted by Au-P3HT interactions, as well as provided UV-controllable electrical properties. The P3HT-AuNPs-CI films could be microscale-patterned via a UV crosslinking photoreaction, represented as a promising photopatternable semiconductor material for use in advanced applications, with tunable electrical properties for fabrication of sub-micron and microscale electronic devices.

Photovoltaic Effect of Polymer Solar Cells Doped with Sensitizing Dye (감광성 염료를 도핑한 고분자 태양 전지 소자 연구)

  • Yun, Soo Hong;Park, Jae Woo;Huh, Yoon Ho;Park, Byoungchoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.3
    • /
    • pp.252-256
    • /
    • 2013
  • We introduced sensitizing dyes into the bulk-heterojunction (BHJ) photovoltaic (PV) layer of polymer solar cells (PSCs). The sensitizing dyes doped were Bis(tetra butyl ammonium) cis-dithio cyanato bis(2,2'-bipyridine-4-carboxylicacid-4'-carboxylate) ruthenium (II) (N719 dye) and the BHJ PV layer used was made of poly (3-hexylthiophene) (P3HT) and phenyl $C_{61}$-butyric acid methyl ester (PCBM). It was found that the N719 dyes increase the photovoltaic performance, i.e., increasing open-circuit voltage and short-circuit current density with improved fill factor. For the P3HT:PCBM PV cells doped with the N719 dyes (0.24 wt%), an increase in power conversion efficiency of 4.0% was achieved, compared to that of the control cells (3.6%) without the N719 dyes.

Otical Properties of P3HT-$TiO_2$ Hybrid Photovoltaic Cell (P3HT-$TiO_2$ 복합형 태양전지의 광학적 특성)

  • Her, Hyun-Jung;Baek, Un-Hyuk;Kim, Jae-Wan;Choi, Y.J.;Kang, C.J.;Kim, Yong-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1243-1244
    • /
    • 2007
  • 전자주개물질 (elelctron donating material)인 poly(3-hexylthiophene) (P3HT)와 전자받개물질 (electron accepting material)인 티타니아 ($TiO_2$)를 이용한 복합형 태양전지에 대해 연구하였다. 유기물 태양전지에 응용되는 전도성 고분자의 여기자 (exiton)의 확산거리가 매우 짧기 때문에 그것을 보완하기 위해 전자주개물질과 받개물질의 표면적을 넓힐 필요가 있다. 비교적 패턴을 형성하기 쉬운 무기물인 티타니아를 이용해 표면적을 증가시켰으며 그렇지 않은 태양전지에 비해 효율이 두 배 증가하는 것을 볼 수 있었다. 티타니아의 표면적을 증가시킨 태양전지의 개방회로전압 ($V_{oc}$), 단락회로전류 ($I_{sc}$), FF (fill factor) 및 효율 (${\eta}$)은 각각 560 mV, 0.657 mA, 48.3 %, 0.18% 이다.

  • PDF

Solution processed organic photodetector utilizing an interdiffused polymer/fullerene bilayer

  • Shafian, Shafidah;Jang, Yoonhee;Kim, Kyungkon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.348-348
    • /
    • 2016
  • Low dark current (off-current) and high photo current are both essential for a solution processed organic photodetector (OPD) to achieve high photo-responsivity. Currently, most OPDs utilize a bulk heterojunction (BHJ) photo-active layer that is prepared by the one-step deposition of a polymer:fullerene blend solution. However, the BHJ structure is the main cause of the high dark current in solution processed OPDs. It is revealed that the detectivity and spectral responsivity of the OPD can be improved by utilizing a photo-active layer consisting of an interdiffused polymer/fullerene bilayer (ID-BL). This ID-BL is prepared by the sequential solution deposition (SqD) of poly(3-hexylthiophene) (P3HT) and [6,6] phenyl C61 butyric acid methyl ester (PCBM) solutions. The ID-BL OPD is found to prevent undesirable electron injection from the hole collecting electrode to the ID-BL photo-active layer resulting in a reduced dark current in the ID-BL OPD. Based on dark current and external quantum efficiency (EQE) analysis, the detectivity of the ID-BL OPD is determined to be $7.60{\times}1011$ Jones at 620 nm. This value is 3.4 times higher than that of BHJ OPDs. Furthermore, compared to BHJ OPDs, the ID-BL OPD exhibited a more consistent spectral response in the range of 400 - 660 nm.

  • PDF

Effect of Active layer (P3HT:PCBM) Thickness on the Performance of Bulk Heterojunction Solar Cells (Active layer (P3HT:PCBM) 두께에 따른 유기물 태양전지의 제작 및 특성 분석)

  • Baek, Woon-Hyuk;Kim, Jung-Min;Yoon, Tae-Sik;Lee, Hyun Ho;Kim, Yong-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1154-1155
    • /
    • 2008
  • 본 연구에서는 전자 주개 물질(electron donor)인 regioregular poly(3-hexylthiophene)(P3HT)와 전자 받개 물질(electron acceptor)인 phenyl-$C_{61}$-butyric acid methyl ester (PCBM)을 혼합한 복합 박막 구조(Bulk Heterojunction)를 이용하여 태양전지를 제작하고 광활성층(Active layer)의 두께를 변화시키면서 광학적 특성 및 전기적 특성에 대해 분석하였다. 광활성층의 두께가 두꺼워 질수록 광흡수율이 높기 때문에 태양전지의 효율이 증가하여 200nm정도의 두께에서 가장 좋은 특성을 보였으며, 그 이상의 두께에서는 광흡수율이 높더라도 직렬저항(Series resistance)의 증가로 개방 회로 전압이 감소하는 것을 볼 수 있었으며, 최적화된 광활성층의 두께(190nm)에서 개방 회로 전압($V_{oc}$)은 0.6V, 단락 회로 전류($J_{sc}$)는 8.29mA, Fill factor(FF)는 0.59, 전력변환효율($\eta$)은 2.94%였다.

  • PDF

Study of P3HT and PCBM Thin Films Prepared by UHV Electrospray Deposition

  • Kim, Ji-Hoon;Hong, Kong-An;Seo, Jae-Won;Park, Yong-Sup
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.329-329
    • /
    • 2011
  • We investigated the thin films of poly(3-hexylthiophene) (P3HT) and C61-butyric acid methylester (PCBM) prepared by ultrahigh vacuum (UHV) electrospray depositioin (ESD) by using in-situ XPS, UPS and ambient-pressure AFM. The morphology, chemical structures, and interface properties of these materials, most widely used for bulk heterojunction organic solar cells, were studied depending on the ESD solution compositions and concentrations. We found that the solution conductivity and flow rate as well as applied voltage are the important parameters for stable electrospray and film formation. These results suggest that UHV ESD is a viable method for the deposition of multilayers of polymers under UHV condition. We also discuss the energy level alignment for the various deposition conditions at the interface, which is one of the most important operating parameters of the bulk heterojunction organic solar cells.

  • PDF

CuO 나노 입자의 PEDOT:PSS 첨가를 통한 유기 태양전지 특성 향상 연구

  • O, Sang-Hun;Jeong, Ju-Hye;Kim, Hyeon-Jae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.388-388
    • /
    • 2011
  • 본 연구에서는 CuO 나노 입자를 poly(3,4,-ethylene dioxythiophene):polystyrene sulfonic acid (PEDOT:PSS) 버퍼층에 첨가하여 정공의 이동도를 높임으로서 poly(3-hexylthiophene) (P3HT) as the electron donor and (6.6) phenyl-C61-butyric acid methyl ester (PCBM) 기반의 유기 태양전지를 제작하였다. 일반적으로 PEDOT:PSS 박막은 높은 광 투과율과 상대적으로 우수한 전기전도도를 지닌 p-type의 유기 반도체 물질로써 유기 태양전지의 홀 전도막으로 널리 사용되어지고 있다. 하지만 낮은 홀이동도로 인하여 전달된 정공이 전극까지 전달되는데에 한계점이 있어 본 연구에서 이를 극복하기 위한 방안으로 p-type의 무기 반도체 물질인 CuO 나노 입자를 PEDOT:PSS 박막내에 첨가하여 홀 이동도를 높이고자 하였다. CuO 나노 입자를 PEDOT:PSS 용액에 각각 5, 10, 15, 20mg/ml 의 농도로 첨가하여 유기 태양 전지의 버퍼층으로 사용을 하였다. 이렇게 제작되어진 각각의 PEDOT:PSS 박막과 CuO 나노 입자가 첨가된 PEDOT:PSS 박막의 전기적, 광학적 및 표면 분석을 통하여 CuO 나노 입자가 PEODT:PSS 박막에 미치는 영향을 조사하였고, 이를 통하여 P3HT:PCBM 기반의 유기 태양전지를 제작하여 전기적 특성 분석을 수행하였다.

  • PDF

ZnO nanoparticles with different concentrations inside organic solar cell active layer

  • Saravanan, Shanmugam;Ismail, Yasser A.M.;Silambarasan, Murugesan;Kishi, Naoki;Soga, Tetsuo
    • Advances in Energy Research
    • /
    • v.4 no.4
    • /
    • pp.275-284
    • /
    • 2016
  • In the present work, ZnO nanoparticles (NPs) have been dispersed alone in the same solvent of the active layer for improving performance parameters of the organic solar cells. Different concentrations of the ZnO NPs have been blended inside active layer of the solar cell based on poly(3-hexylthiophene) (P3HT), which forms the hole-transport network, and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), which forms the electron-transport network. In the present investigations, the ZnO NPs may represent an efficient tool for improving light harvesting through light scattering inside active layer, electron mobility, and electron acceptance strength which tend to improve photocurrent and performance parameters of the investigated solar cell. The fill factor (FF) of the ZnO-doped solar cell increases nearly 14% compared to the non-doped solar cell when the doping is 50%. The present investigations show that ZnO NPs improve power conversion efficiency of the solar cell from 1.23% to 1.64% with increment around 25% that takes place after incorporation of 40% as a volume ratio of the ZnO NPs inside P3HT:PCBM active layer.

Solution-processed Polymer Tandem Cells Using Nano Crystalline $TiO_2$ Interlayer ($TiO_2$ 나노 입자의 중간 전극을 이용한 직렬 적층형 유기 태양 전지)

  • Chung, Won-Suk;Ju, Byeong-Kwon;Ko, Min-Jae;Park, Nam-Gyu;Kim, Kyung-Kon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.444-444
    • /
    • 2008
  • For the polymer tandem cell, simple and advantaged solution-based method to electron transport intermediate layer is presented which are composed $TiO_2$ nanoparticles. Device were based on a regioregular Poly(3-hexylthiophene)(P3HT) and [6,6]-phenyl $C_{61}$ butyric acid methyl ester($PC_{60}BM$) blend as a donor and acceptor bulk-heterojunction. For the middle electrode interlayer, the $TiO_2$ nanoparticles were well dispersed in ethanol solution and formed thin layer on the P3HT:PCBM charge separation layer by spin coating. The layer serves as the electron transport layer and divides the polymer tandem solar cell. The open-circuit voltage (Voc) for the polymer tandem solar cells was closed to the sum of those of individual cells.

  • PDF

The Approach for the Trade-off Study Between Field-effect Mobility and Current on/off Ratio in P3HT Field-effect Transistors

  • Jeong, Shin-Woo;Chang, Seong-Pil;Park, Jung-Ho;Oh, Tae-Yeon;Ju, Byeong-Kwon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.1
    • /
    • pp.15-19
    • /
    • 2012
  • Presented herein are the results of the study that was conducted on the electrical characteristics of organic field-effect transistors based on poly(3-hexylthiophene), particularly the thickness and annealing temperature of their active layer is varied. The changes in field-effect mobility and current on/off ratio were explored. It was observed that both increasing annealing temperature from $60^{\circ}C$ to $100^{\circ}C$ and various concentrations influence the trade-off relations between the mobility and current on/off ratio. The surface morphology of the 2-${\mu}m^2$ area with various thicknesses was scanned via atomic-forcemicroscopy(AFM) to verify the relationship between surface morphology, which is related to the thickness of the film, and device performance.