Browse > Article
http://dx.doi.org/10.4313/JKEM.2012.25.1.15

The Approach for the Trade-off Study Between Field-effect Mobility and Current on/off Ratio in P3HT Field-effect Transistors  

Jeong, Shin-Woo (Display and Nanosystem Laboratory, College of Engineering, Korea University)
Chang, Seong-Pil (Display and Nanosystem Laboratory, College of Engineering, Korea University)
Park, Jung-Ho (Display and Nanosystem Laboratory, College of Engineering, Korea University)
Oh, Tae-Yeon (Display and Nanosystem Laboratory, College of Engineering, Korea University)
Ju, Byeong-Kwon (Display and Nanosystem Laboratory, College of Engineering, Korea University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.25, no.1, 2012 , pp. 15-19 More about this Journal
Abstract
Presented herein are the results of the study that was conducted on the electrical characteristics of organic field-effect transistors based on poly(3-hexylthiophene), particularly the thickness and annealing temperature of their active layer is varied. The changes in field-effect mobility and current on/off ratio were explored. It was observed that both increasing annealing temperature from $60^{\circ}C$ to $100^{\circ}C$ and various concentrations influence the trade-off relations between the mobility and current on/off ratio. The surface morphology of the 2-${\mu}m^2$ area with various thicknesses was scanned via atomic-forcemicroscopy(AFM) to verify the relationship between surface morphology, which is related to the thickness of the film, and device performance.
Keywords
Flexible; P3HT; Field effect mobility; Current on/off ratio;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Zen, J. Pflaum, S. Hirschmann, W. Zhuang, F. Jaiser, U. Asawapirom, J. P. Rabe, U. Scherf, and D. Neher, Adv. Mater., 14, 757 (2004).
2 D. J. Gundlach, H. Klauk, C. D. Sheraw, C. C. Kuo, J. R. Huang, and T. N. Jackson, Tech. Dig. Int. Electron Devices Meet., 111 (1999).
3 N. Kotani and S. Kawazu, Solid State Electron., 22, 63 (1978).
4 D. J. Gundlach, Y. Y. Lin, T. N. Jackson, S. F. Nelson, and D. G. Schlom, IEEE Electron Devices Lett., 18, 87 (1997).   DOI   ScienceOn
5 C. D. Dimitrakopoulos and P. R. L. Malenfant, Adv. Mater., 14, 2 (2002).
6 P. D. Byrne, Antonio F. M. H. Yoon, and T. J. Marks, Adv. Mater., 17, 1705 (2005).   DOI   ScienceOn
7 Z. Liu, J. H. Oh, M. E. Roberts, P. Wei, B. C. Paul, M. Okajima, Y. Nishi, and Z. Bao, Appl. Phys., 94, 203301 (2009).
8 J A. Rogers, Z. Bao, A. Makjija, and P. Braun, Adv. Mater., 11, 9 (1999).
9 E. J. Meijer, C. Tanase, P. W. M. Blom, E. V. Veenendaal, B. H. Huisman, D. M. D. Leeuw, and T. M. Klapwijk, Appl. Phys., 80, 3838 (2002).
10 Y. Kim, S. A. Choulis, J. Nelson, D. D. C. Bradley, S. Cook, and J. R. Durrant, Appl. Phys. Lett., 86, 063502 (2005).   DOI   ScienceOn
11 F. Dinelli, M. Murgia, Pablo Levy, M. Cavallini, and F. Biscarini, Phys. Rev. Lett., 92, 116802 (2004).   DOI
12 D. R. Hines, S. Mezhenny, M. Breban, E. D. Williams, V. W. Ballarotto, G. Esen, A. Southard, and M. S. Fuhrer, Appl. Phys., 86, 163101 (2005).
13 J. H. Cho, J. Lee, Y. Xia, B. Kim, Y. He, M. J. Renn, T. P. Lodge, and C. D. Frisbie, Nature Mater., 7, 900 (2008).   DOI
14 J. Takeya, C. Goldman, S. Haas, K. P. Pernstich, B. Ketterer, and B. Batlogg, J. Appl. Phys., 94, 5800 (2003).   DOI
15 M. Shtein, J. Mapel, J. B. Benziger, and S. R. Forrest, Appl. Phys. Lett., 81, 268 (2002).   DOI   ScienceOn
16 A. Dodabalapur, L. Torsi, and H. E. Katz, Science, 268, 14 (1995).   DOI
17 G. Li, V. Shrotriya, Y. Yao, and Y. Yang, J. Appl. Phys., 98, 043704 (2005).   DOI   ScienceOn