• Title/Summary/Keyword: 3-Dimensional earth pressure

Search Result 51, Processing Time 0.035 seconds

A Reliability Analysis of Slope Stability of Earth-Rockfill Dam (Earth-Rockfill Dam사면파괴에 대한 신뢰도 연구(I))

  • 박현종;이인모
    • Geotechnical Engineering
    • /
    • v.7 no.3
    • /
    • pp.21-32
    • /
    • 1991
  • The purpose of this paper is to develop a reliability model for slope stability of Earth-rockfill dams which accounts for all uncertainties encountered. The uncertain factors of the design variables include the cohesion, the angle of internal friction, and the porewater Pressure in each zone. More specifically, the model errors in estimating those variables are studied in depth. To reduce the uncertainties due to model errors, updated design variables are obtained using Bayesian Theory. For stability analysis, both the two-dimesional stability analysis and the three-dimensional stability analysis where the end effects and the system reliability concept are considered are used for the reliability calculations. The deterministic safety factor by the three-dimensional analysis is lager than that by the two-dimensional anlysis. However, the probability of failure by the three-dimensional analysis is about 3.5 times larger that by the two-dimensional analysis. It is because the system reliability concept is used in the three-dimensional analysis. The sensitivity analysis shows that the probability of failure is more sensitive to the uncertainty of the cohesion than that of the angle of internal friction.

  • PDF

Estimation of RPS Method Using 3-Dimensional Numerical Analysis (3차원 수치해석을 이용한 RPS 공법의 적용성 평가)

  • Roh, Jeong-Min;Shin, Eun-Chul
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.2 s.33
    • /
    • pp.174-179
    • /
    • 2006
  • Recently, the crossing tunnel has been constructed frequently to connect the separated area by highway and railroad. The construction of crossing tunnel must be progressed while maintaining the existing traffic of the highway as well as railroad. There are many cross funnelling methods such as NTR, TRCM, Messer Shield, Front Jacking, and Pipe Roof Method. The advantages of adopting RPS(Roof Panel Shield) method in crossing tunnel construction with comparing other existing cross funnelling methods are needed a little volume of concrete and easy to change the direction of cutting shoe during the construction of pipe roof, The 3-dimensional numerical analysis of RPS to consider the arching effect was performed for the application in the crossing tunnel under railroad. The earth pressure distribution and settlement were predicted when the RPS method was applied during the excavation for crossing railroad tunnel construction.

3-Dimensional Numerical Analysis of Crossing Tunnel under Railroad using RPS Method (RPS공법을 이용한 철도횡단터널의 3차원 수치해석)

  • Shin Eun-Chul;Kim Jung-Hyi;Lee Eun-Soo;Roh Jeong-Min
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.454-461
    • /
    • 2005
  • There are many cross tunnelling methods such as NTR, TRCM, Messer Shield, Front Jacking, and Pipe Roof Method. The advantages of adopting RPS(Roof Panel Shield) method in crossing tunnel construction with comparing other existing cross tunnelling method are needed a little space and easy to change the direction of cutting shoe during the construction of pipe roof. The 3-dimensional numerical analysis of RPS was performed for the application in the crossing tunnel under railroad. The earth pressure distribution and settlement were predicted when the RPS method was applied during the excavation for crossing railroad tunnel construction.

  • PDF

Experimental and numerical study on the stability of slurry shield tunneling in circular-gravel layer with different cover-span ratios

  • Liu, Xinrong;Liu, Dongshuang;Xiong, Fei;Han, Yafeng;Liu, Ronghan;Meng, Qingjun;Zhong, Zuliang;Chen, Qiang;Weng, Chengxian;Liu, Wenwu
    • Geomechanics and Engineering
    • /
    • v.28 no.3
    • /
    • pp.265-281
    • /
    • 2022
  • A set of slurry shield test system capable of cutter cutting and slurry automatic circulation is used to investigate the deformation characteristics, the evolution characteristics of support resistance and the distribution and evolution process of earth pressure during excavating and collapsing of slurry shield tunneling in circular-gravel layer. The influence of cover-span ratio on surface subsidence, support resistance and failure mode of excavation face is also discussed. Three-dimensional numerical calculations are performed to verify the reliability of the test results. The results show that, with the decrease of the supporting force of the excavation face, the surface subsidence goes through four stages: insensitivity, slow growth, rapid growth and stability. The influence of shield excavation on the axial earth pressure of the front soil is greater than that of the vertical earth pressure. When the support resistance of the excavation face decreases to the critical value, the soil in front of the excavation face collapses. The shape of the collapse is similar to that of a bucket. The ultimate support resistance increase with the increase of the cover-span ratio, however, the angle between the bottom of the collapsed body and the direction of the tunnel excavation axis when the excavation face is damaged increase first and then becomes stable. The surface settlement value and the range of settlement trough decrease with the increase of cover-span ratio. The numerical results are basically consistent with the model test results.

Deformation analyses during subway shield excavation considering stiffness influences of underground structures

  • Zhang, Zhi-guo;Zhao, Qi-hua;Zhang, Meng-xi
    • Geomechanics and Engineering
    • /
    • v.11 no.1
    • /
    • pp.117-139
    • /
    • 2016
  • Previous studies for soil movements induced by tunneling have primarily focused on the free soil displacements. However, the stiffness of existing structures is expected to alter tunneling-induced ground movements, the sheltering influences for underground structures should be included. Furthermore, minimal attention has been given to the settings for the shield machine's operation parameters during the process of tunnels crossing above and below existing tunnels. Based on the Shanghai railway project, the soil movements induced by an earth pressure balance (EPB) shield considering the sheltering effects of existing tunnels are presented by the simplified theoretical method, the three-dimensional finite element (3D FE) simulation method, and the in-situ monitoring method. The deformation prediction of existing tunnels during complex traversing process is also presented. In addition, the deformation controlling safety measurements are carried out simultaneously to obtain the settings for the shield propulsion parameters, including earth pressure for cutting open, synchronized grouting, propulsion speed, and cutter head torque. It appears that the sheltering effects of underground structures have a great influence on ground movements caused by tunneling. The error obtained by the previous simplified methods based on the free soil displacements cannot be dismissed when encountering many existing structures.

Quasi-Three Dimensional Stability Analysis of the Geosynthetic-Reinforced Soil Retaining Wall System (GRS-RW 보강토벽체 공법의 준3차원 안정해석)

  • 김홍택;박준용
    • Geotechnical Engineering
    • /
    • v.14 no.4
    • /
    • pp.177-204
    • /
    • 1998
  • In the present study, a method of quasi-three dimensional stability analysis is proposed for a systematic design of the GRS-RW(Geosynthetic-Reinforced Soil Retaining Wall) system based on the postulated three dimensional failure wedge. The proposed method could be applied to the analysis of the stability of both the straight-line and cove-shaped are. As with skew reinforcements. Maximum earth thrust expected to act on the rigid face wall is assumed to distribute along the depth, and wall displacements are predicted based on both the assumed compaction-induced earth pressures and one dimensional finite element method of analysis. For a verification of the procedure proposed in the present study, the predicted wall displacements are compared with chose obtained from the RMC tests in Canada and the FHWA tests in U.S.A. In these comparisons the wall displacements estimated by the methods of Christopher et at. and Chew & Mitchell are also included for further verification. Also, the predicted wall displacements for the convex-shaped zone reinforced with skew reinforcements are compared with those by $FLAC_{3D}$ program analyses. The assumed compaction-induced earth pressures evaluated on the basic of the proposed method of analysis are further compared with the measurements by the FHWA best wall. A parametric stduy is finally performed to investigate the effects of various design parameters for the stability of the GRS-RW system

  • PDF

A Numerical Analysis on Ground Deformation due to Tunnel Excavation : Case Study of Seoul Subway NATM Tunnel (터널 굴착에 따른 지반 변형 수치해석 : 서울 지하철 NATM 터널 해석 사례 연구)

  • 손준익;이원제
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1991.10a
    • /
    • pp.133-151
    • /
    • 1991
  • In this paper an analytic discussion was made for a finite element analysis performed for the case study of Seoul subway NATM tunnel. The effects mainly discussed on the ground deformation analysis were the staged tunnel excavation and the excavated distance from a tunnel facing. The concept of ground characteristic line has been applied to properly consider the loading condition given by staged tunnel excavation so that the imaginary supporting pressure is applied on the excavated tunnel face. Discussions on the results of the performed finite element analysis were mainly made with respect to the ground settlement, tunnel displacement, earth pressure, stress mobilized in supporting members. And the three dimensional supporting effect due to the tunnel facing was evaluated based on an elastic closed-form solution and a result of two dimensional axisymmetric finite element analysis.

  • PDF

Ground Deformation Analysis of Tunnel Excavation Based on the Ground Characteristic Line Concept (지반특성곡선 개념을 이용한 터널굴착 거동해석)

  • 손준익;정하익
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1992.04a
    • /
    • pp.118-125
    • /
    • 1992
  • The ground deformation due to the tunnel excavation is dependent on various factors such as ground condition, geometry of the tunnel, excavation method, installation of support members, construction condition of each excavation stage, etc. And the distance from the facing effects significantly the stress conditions of the supported and unsupported ground due to the 3-dimensional structural nature of the excavated tunnel. The concept of ground characteristic line has been applied to properly consider the loading condition given by staged tunnel excavation so that the imaginary supporting pressure is applied against the surface of excavated ground. Discussions on the results of the performed finite element analysis were mainly made with respect to the ground settlement, tunnel displacement, earth pressure, stress mobilized in supporting members.

  • PDF

In-situ Phase Transition Study of Minerals using Micro-focusing Rotating-anode X-ray and 2-Dimensional Area Detector (집속 회전형 X-선원과 이차원 검출기를 이용한 광물의 실시간 상전이 연구)

  • Seoung, Dong-Hoon;Lee, Yong-Moon;Lee, Yong-Jae
    • Economic and Environmental Geology
    • /
    • v.45 no.2
    • /
    • pp.79-88
    • /
    • 2012
  • The increased brightness and focused X-ray beams now available from laboratory X-ray sources facilitates a variety of powder diffraction experiments not practical using conventional in-house sources. Furthermore, the increased availability of 2-dimensional area detectors, along with implementation of improved software and customized sample environmental cells, makes possible new classes of in-situ and time-resolved diffraction experiments. These include phase transitions under variable pressure- and temperature conditions and ion-exchange reactions. Examples of in-situ and time-resolved studies which are presented here include: (1) time-resolved data to evaluate the kinetics and mechanism of ion exchange in mineral natrolite; (2) in-situ dehydration and thermal expansion behaviors of ion-exchanged natrolite; and (3) observations of the phases forming under controlled hydrostatic pressure conditions in ion-exchanged natrolite. Both the quantity and quality of the in-situ diffraction data are such to allow evaluation of the reaction pathway and Rietveld analysis on selected dataset. These laboratory-based in-situ studies will increase the predictability of the follow-up experiments at more specialized beamlines at the synchrotron.

A Study on Earth Pressure Calculating Method about Shield TBM Tunnel Segments in the Rock (암반층에서 쉴드 TBM 터널 세그먼트의 작용하중 산정방법에 관한 연구)

  • Chun, Byungsik;Ki, Jungsu;Kang, Taehee;Kwag, Yunehyeong;Byun, Yoseph
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.5
    • /
    • pp.13-21
    • /
    • 2014
  • This study analyzed the differences in the analysis techniques through a comparative analysis of the various segment's modeling techniques of Shield TBM method and proposed reasonable modeling techniques. Also, this study suggested reasonable estimating methods of load to be applicable in the field through the load analysis and three-dimensional finite element analysis by estimating model of rock mass relaxation load. Estimating method of relaxation area by rock mass rating makes no odds of output in subgrade with high rock mass rating, but so the difference of output is large, that is judged to set conservative design off. In estimating result of rock mass relaxation area by three-dimensional analysis relaxation area of subgrade with low-grade soil was predicted to be positioned at medium-range of many methods, in case of designing segment in subgrade with low-grade soil it needs to actively review estimation of relaxation area through three-dimensional analysis reflecting mechanical tunnel excavation.