• 제목/요약/키워드: 3-Dimensional Profile Measurement

검색결과 63건 처리시간 0.029초

레이저 슬릿광을 이용한 3차원 계측 장치에 관한 연구 (A Study for the 3-Dimensional Measurement System using Laser Slit-Ray)

  • 김선일;정재문;양윤모
    • 전자공학회논문지B
    • /
    • 제29B권2호
    • /
    • pp.27-39
    • /
    • 1992
  • 3 Dimensional measurement system using camera and laser slit-ray is studied. Precise calibration technique in this system is suggested. Calibration is accomplished with calibration die, calibration block and robot. For obtaining calibration parameters, the equations are solved using least square error method from a great many calibration points to reduce measuring error. Continuous measurement is possible for the object which is larger than one frame of camera. The efficiency and usability are proved by applying to the tire profile measuring system which measures tire profile using robot and this system.

  • PDF

슬릿광 주사방법에 의한 자유곡면의 삼차원형상 측정 (3-Dimensional Profile Measurement of Free-Formed Surfaces by Slit Beam Scanning Topography)

  • 박현구;김승우;박준호
    • 대한기계학회논문집
    • /
    • 제17권5호
    • /
    • pp.1202-1207
    • /
    • 1993
  • 본 논문에서는 삼차원형상 측정의 슬릿광 주사방법(slit beam scanning topography)의 형상측정에 응용에 대해 기술한다. 이는 광학적인 방법으로 레이저 평면광을 물체에 주사하여 얻어지는 변형된 광궤적으로부터 광삼각법(optical triangulation)과 컴퓨터비젼 기술을 응용하여 삼차원형상을 측정한다. 기존의 방법 들과 비교하여 슬릿광 주사방법은 고속의 삼차원측정이 가능하여 검사자동화에 용이 하게 적용될 수 있는 장점을 갖는다. 본 논문에서는 슬릿광 주사방법에 대한 기본원 리를 유도하며, 이를 구현할 수 있는 측정시스템의 설계와 실제 측정예를 통해 본 방법이 갖는 장단점에 관하여 검토한다.

접촉감지프로브를 이용한 자유곡면의 삼차원형상 자동측정 (Automatic Measurement of 3-Dimensional Profile of Free-Formed Surfaces by Using Touch-Trigger Probes)

  • 송창규
    • 대한기계학회논문집
    • /
    • 제17권2호
    • /
    • pp.407-415
    • /
    • 1993
  • This report presents an automatic measurement method of 3-dimensional profiles of free-formed surfaces, by using a touch a touch-trigger contact probe along with a conventional coordinate measuring machine. The method proceeds in three steps; The surface profile under consideration is traced by the probe in an automatic manner, and then its measured data is compensated by considering the actual probe radius. Finally the compensated data is rearranged in the form suitable for the further processings of CAD/CAM applications. Some experimental results are discussed to verify the validity of the method suggested in this study.

광위상간섭에 의한 경면의 정밀 형상측정 (Precision Profile Measurement of Mirror Surfaces by Phase Shifting Interferometry)

  • 김승우;공인복;민선규
    • 대한기계학회논문집
    • /
    • 제16권8호
    • /
    • pp.1530-1535
    • /
    • 1992
  • 본 연구에서는 초정밀 경면의 표면형상을 비접촉식으로 측정하기 위한 광위상 간섭법(phase shifting interferometry)에 관한 연구결과를 기술하였다. 리닉(lin- nik) 광학계를 이용한 광위상간섭에 대한 기본 측정원리를 정립하고 표면측정을 위한 간섭무늬처리 영상해석 알고리즘을 개발하였다. 그리고 실제적인 경면의 측정을 통 하여 개발한 광학계 및 측정 알고리즘의 타당성을 검증하였다.

High-speed Three-dimensional Surface Profile Measurement with the HiLo Optical Imaging Technique

  • Kang, Sewon;Ryu, Inkeon;Kim, Daekeun;Kauh, Sang Ken
    • Current Optics and Photonics
    • /
    • 제2권6호
    • /
    • pp.568-575
    • /
    • 2018
  • Various techniques to measure the three-dimensional (3D) surface profile of a 3D micro- or nanostructure have been proposed. However, it is difficult to apply such techniques directly to industrial uses because most of them are relatively slow, unreliable, and expensive. The HiLo optical imaging technique, which was recently introduced in the field of fluorescence imaging, is a promising wide-field imaging technique capable of high-speed imaging with a simple optical configuration. It has not been used in measuring a 3D surface profile although confocal microscopy originally developed for fluorescence imaging has been adapted to the field of 3D optical measurement for a long time. In this paper, to the best of our knowledge, the HiLo optical imaging technique for measuring a 3D surface profile is proposed for the first time. Its optical configuration and algorithm for a precisely detecting surface position are designed, optimized, and implemented. Optical performance for several 3D microscale structures is evaluated, and it is confirmed that the capability of measuring a 3D surface profile with HiLo optical imaging technique is comparable to that with confocal microscopy.

93 대전엑스포 꿈돌이 조각가로보트의 인물형상 측정시스템 (3-D Profile Measurement System of Live Human Faces for the '93 Taejon Expo Kumdori Robot Scupltor)

  • 김승우;박현구;김문상
    • 대한기계학회논문집
    • /
    • 제19권3호
    • /
    • pp.670-679
    • /
    • 1995
  • This paper presents the 3-D profile measurement system of live human faces, which was developed specially for 'KUMDORI sculptor robot' of the '93 Taejon Exposition. '93 Taejon EXPO. The basic principle for measurement adopts the slit beam projection which is a method of measuring 3-D surface profiles using geometric optics between the slit beam and the CCD camera. Since the slit beam projection consumes long measuring time, it is unfit to measure the 3-D profiles of living objects as human. Therefore, the projection type slit beam method which consumes short measuring time is newly suggested. And an algorithm to reconstruct the 3-D profile from the deformed images using finite approximated calibration is suggested and practically implemented. The projection type slit beam method was applied to spectators in a period of '93 Taejon EXPO. The measurement results show that the technique is suitable for 3-D face profile measurement on a living body.

터널링효과를 이용한 초미세 가공표면의 형상측정 (Profile Measurements of Micro-Machined Surfaces by Scanning Tunneling Microscopy)

  • 정승배;이용호;김승우
    • 대한기계학회논문집
    • /
    • 제17권7호
    • /
    • pp.1731-1739
    • /
    • 1993
  • An application of Scanning Tunneling Microscopy(STM) is investigated for the measurement of 3-dimensional profiles of the macro-machined patterns of which critical dimensions lie in the range of submicrometers. Special emphasis of this investigation is given to extending the measuring ranges of STM upto the order of several micrometers while maintaining superb nanometer measuring resolution. This is accomplished by correcting hysteresis effects of piezoelectric actuators by using non-linear compensation models. Detailed aspects of design and control of a prototype measurement system are described with some actual measuring examples in which fine It patterns can successfully be traced with a resolution of 1 nanometer over a surface range of $4{\times}2$ micrometers.

3D Particle Image Detection by Using Color Encoded Illumination System

  • Kawahashi M.;Hirahara H.
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2001년도 Proceedings of 2001 Korea-Japan Joint Seminar on Particle Image Velocimetry
    • /
    • pp.100-107
    • /
    • 2001
  • A simple new technique of particle depth position measurement, which can be applied for three-dimensional velocity measurement of fluid flows, is proposed. Two color illumination system that intensity is encoded as a function of z-coordinate is introduced. A calibration procedure is described and a profile of small sphere is detected by using the present method as preliminary test. Then, this method is applied to three-dimensional velocity field measurement of simple flow fields seeded with tracer particles. The motion of the particles is recorded by color 3CCD camera. The particle position in the image plane is read directly from the recorded image and the depth of each particle is measured by calculation of the intensity ratio of encoded two color illumination. Therefore three-dimensional velocity components are reconstructed. Although the result includes to some extent error, the feasibility of the present technique for three-dimensional velocity measurement was confirmed.

  • PDF

A Study on 3-Dimensional Profilometry of Steam Generator Tube Using a New Eddy Current Probe

  • Kim, Young-Kyu;Song, Myung-Ho;Choi, Myung-Sik
    • 비파괴검사학회지
    • /
    • 제30권3호
    • /
    • pp.225-235
    • /
    • 2010
  • There are many types of the geometric transitions such as dent, bulge, protrusion, expansion, etc, on the inner and outer surfaces of heat exchanger tubes, steam generator tubes, and condenser tubes of nuclear power plants. Such geometric transition causes a local residual stress in heat exchanger tubes and acts as a structural factor accelerating the evolution of defects, in particular stress corrosion cracks. In the conventional eddy current test methods, the bobbin coil profilometry can provide 2-dimensional geometric information on the variation of the average inner diameter along the tube length, but the 3-dimensional distribution and the quantitative size of a local geometric transition existing in the tube cannot be measured. In this paper, a new eddy current probe, developed for the 3-dimensional profile measurement, is introduced and its superior performance is compared with that from the conventional bobbin coil profilometry for the various types of geometric transition. Also, the accuracy of the probe for the quantitative profile measurement is verified by comparing the results with that from the laser profilometry. It is expected that the new eddy current probe and techniques can be effectively used for an optimization of the tube expansion process, and the management of tubes with geometric transitions in service.