• Title/Summary/Keyword: 3-Dimensional Flow Field

Search Result 475, Processing Time 0.025 seconds

NUMERICAL ANALYSIS FOR TURBULENT FLOW AND AERO-ACOUSTIC OVER A THREE DIMENSIONAL CAVITY WITH LARGE ASPECT RATIO (3차원 고세장비 공동 주위의 난류유동 및 음향 특성에 관한 수치적 연구)

  • Mun, P.U.;Kim, J.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.297-301
    • /
    • 2008
  • The flight vehicles have cavities such as wheel wells and bomb bays. The flow around a cavity is characterized as unsteady flow because of the formation and dissipation of vortices due to the interaction between the freestream shear layer and cavity internal flow, the generation of shock and expansion waves. Resonance phenomena can damage the structures around the cavity and negatively affect aerodynamic performance and stability. The flow field is observed to oscillate in the "shear layer mode" with low aspect ratio. In the present study, numerical analysis was performed for cavity flows by the unsteady compressible three dimensional Reynolds-Averaged Navier-Stokes (RANS) equations with Wilcox's $\kappa$-$\omega$ turbulence model. The flow field is observed to oscillate in the shear layer mode" with large aspect ratio. Based on the SPL(Sound Pressure Level) analysis of the pressure variation at the cavity trailing edge, the dominant frequency was analyzed and compared with the results of Rossiter's formul. The aero-acoustic wave analyzed with CPD(Correlation of Pressure Distribution).

  • PDF

NUMERICAL ANALYSIS FOR TURBULENT FLOW AND AERO-ACOUSTIC OVER A THREE DIMENSIONAL CAVITY WITH LARGE ASPECT RATIO (3차원 고세장비 공동 주위의 난류유동 및 음향 특성에 관한 수치적 연구)

  • Mun, P.U.;Kim, J.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.297-301
    • /
    • 2008
  • The flight vehicles have cavities such as wheel wells and bomb bays. The flow around a cavity is characterized as unsteady flow because of the formation and dissipation of vortices due to the interaction between the freestream shear layer and cavity internal flow, the generation of shock and expansion waves. Resonance phenomena can damage the structures around the cavity and negatively affect aerodynamic performance and stability. The flow field is observed to oscillate in the "shear layer mode" with low aspect ratio. In the present study, numerical analysis was performed for cavity flows by the unsteady compressible three dimensional Reynolds-Averaged Navier-Stokes (RANS) equations with Wilcox's ${\kappa}-{\varepsilon}$ turbulence model. The flow field is observed to oscillate in the "shear layer mode" with large aspect ratio. Based on the SPL(Sound Pressure Level) analysis of the pressure variation at the cavity trailing edge, the dominant frequency was analyzed and compared with the results of Rossiter's formul. The aero-acoustic wave analyzed with CPD(Correlation of Pressure Distribution).

  • PDF

COMPARISON OF TWO- AND THREE-DIMENSIONAL SUPERSONIC TURBULENT FLOWS OVER A SINGLE CAVITY (단일 공동주위의 2차원과 3차원 초음속 유동 비교)

  • Woo C.H.;Kim J.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.235-238
    • /
    • 2005
  • The unsteady supersonic flow over two- and three-Dimensional cavities has been analyzed by the integration of unsteady Reynolds-Averaged Navier-Stokes(RANS) with the k - w turbulence model. The unsteady flow is characterized by the periodicity due to the mutual relation between the shear layer and the internal flow in cavities. Numerical method is upwind TVD scheme based on the flux vector split with the Van Leer limiters, and time accuracy is used explicit 4th stage Runge-Kutta scheme. Cavity flows are Comparison of two- and three-dimensional. The cavity has a L/D ratio of 3 for two-dimensional case. and same L/D and W/D ratio is 1 for three-dimensional case. The Mach and Reynolds numbers are held constant at 1.5 and 450000 respectively. For the three-dimensional case, the flow field is observed to oscillate in the 'shear layer mode' with a feedback mechanism that follow Rossiter's formula. On the other hand, the self-sustained oscillating flow transitions to a 'wake mode' for the two-dimensional simulation, with more violent fluctuations inside the cavity.

  • PDF

Numerical Study of Flow Characteristics due to Interaction Between a Pair of Vortices in a Turbulent Boundary Layer

  • Yang, Jang-Sik
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.147-157
    • /
    • 2006
  • This paper represents a numerical study of the flow field due to the interactions between a pair of vortices produced by vortex generators in a rectangular channel flow. In order to analyze longitudinal vortices induced by the vortex generators, the pseudo-compressibility method is introduced into the Reynolds-averaged Navier-Strokes equations of a 3-dimensional unsteady, incompressible viscous flow. A two-layer $k-{\epsilon}$ turbulence model is applied to a flat plate 3-dimensional turbulence boundary to predict the flow structure and turbulence characteristics of the vortices. The computational results predict accurately the vortex characteristics related to the flow field, the Reynolds shear stresses and turbulent kinetic energy. Also, in the prediction of skin friction characteristics the computational results are reasonably close to those of the experiment obtained from other researchers.

Numerical Analysis of Three-Dimensional Compressible Viscous Flow Field in Turbine Cascade (터빈 익렬내부의 3차원 압축성 점성유동장의 수치해석)

  • 정희택;백제현
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.10
    • /
    • pp.1915-1927
    • /
    • 1992
  • A three-dimensional Navier-Stokes code has been developed for analysis of viscous flows through turbomachinery blade rows or other internal passages. The Navier-Stokes equations are written in a cartesian coordinate system, then mapped to a general body-fitted coordinate system. Streamwise viscous terms are neglected and turbulent effects are modeled using the baldwin-Lomax model. Equations are discretized using finite difference method on the stacked C-type grids and solved using LU-ADI decomposition scheme. calculations are made for a two-dimensional cascade in a transonic wind-tunnel to see the infuence of the endwalls. The flow pattern of the three-dimensional flow near the endwall is found to be different from that of the two-dimensional flow due to the existence of the endwalls.

Numerical studies of unsteady flow field and aerodynamic forces on an oscillating 5:1 rectangular cylinder in a sinusoidal streamwise flow

  • Ma, Ruwei;Zhou, Qiang;Wang, Peiyuan;Yang, Yang;Li, Mingshui
    • Wind and Structures
    • /
    • v.34 no.1
    • /
    • pp.91-100
    • /
    • 2022
  • Numerical simulations are conducted to investigate the uniform flow (UF) and sinusoidal streamwise flow (SSF) over an oscillating 5:1 rectangular cylinder with harmonic heaving motion at initial angles of attack of α = 0° and 3° using two-dimensional, unsteady Reynolds-averaged Navier-Stokes (URANS) equations. First, the aerodynamic parameters of a stationary 5:1 rectangular cylinder in UF are compared with the previous experimental and numerical data to validate the capability of the computationally efficient two-dimensional URANS simulations. Then, the unsteady flow field and aerodynamic forces of the oscillating 5:1 rectangular cylinder in SSF are analysed and compared with those in UF to explore the effect of SSF on the rectangular cylinder. Results show that the alternative vortex shedding is disturbed by SSF both at α = 0° and 3°, resulting in a considerable decrease in the vortex-induced force, whereas the unsteady lift component induced by cylinder motion remains almost unchanged in the SSF comparing with that in UF. Notably, the strong buffeting forces are observed at α = 3° and the energy associated with unsteady lift is primarily because of the oscillations of SSF. In addition, the components of unsteady lift induced by the coupling effects of SSF and cylinder motion are discussed in detail.

Prediction Modeling of Unburned Hydrocarbon Oxidation in the Exhaust Port of a Propane-Fueled SI Engine (프로판 엔진의 배기 포트에서 탄화수소 산화 예측을 위한 모델링)

  • 이형승;박종범;최회명;민경덕;김응서
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.2
    • /
    • pp.33-40
    • /
    • 2000
  • In order to investigate the exhaust structure and secondary oxidation of unburned hydrocarbon (HC) in the exhaust port, a numerical simulation was performed with 3-dimensional flow model and oxidation mechanism optimized for port oxidation. To predict the exhaust and oxidation process with consideration of flow, mixing, and temperature, 3-dimensional flow model and HC oxidation model were used with a commercial computational program, STAR-CD. The flow model were with moving grid for valve motion, which could predict the change of flow field with respect to valve lift. Optimization was performed to predict the HC oxidation with temperature range of 1200~1500K, low HC and oxygen concentration, existence of intermediate species, as typical in port oxidation. The constructed model could predict the port oxidation process with oxidation degree of 14~48% according to the engine operation conditions.

  • PDF

Numerical Analysis of Three-Dimensional Flow in a Forward Curved Centrifugal Fan (전향 원심 송풍기의 3 차원 유동에 대한 수치해석)

  • Yun Jun Yong;Maeng Ju Seong;Byeon Seong Jun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.05a
    • /
    • pp.174-180
    • /
    • 1998
  • Numerical study of three-dimensional turbulent flow in a forward curved centrifugal fan is presented. Standard $k-{\varepsilon}$ turbulence model and non-orthogonal curvilinear coordinates are used to consider the turbulent flow field and complex geometry. Finite Volume approach is adopted for discretization scheme and structured grid system is used to help convergence. Multiblock grid system is used for flow field and divided into five domains that are inlet, outlet, impeller, tip clearance and scroll. It is assumed that the flow field is steady state and incompressible. This numerical work is performed with commercial CFD-ACE code developed by CFD Research Corporation, and the results are compared wi th the experimental data

  • PDF

A Feasibility Study on the 3-Dimensional Flow of the Jet under the Static Electromagnetic Field

  • Cho I. S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.144-145
    • /
    • 2003
  • A feasibility study on the alternating jet flow under the static electromagnetic field was carried out. When a fluid with electrical conductivity lies in the static electromagnetic field and moves electric current occurs in the fluid. Due to the electromagnetic field and the electric current, lorentz force generates in the fluid, which undergo the 'breaking' effect to the fluid. In order to simulate the complex fluid flow in the magnetic field, electromagnetic and fluid flow analysis need to be solved simultaneously. In the present study, a SOLA (SOLution Algorithm) scheme was used in order to calculate electromagnetic and fluid flow field. Jet flow without an electromagnetic field was compared with analytical solution in order to validate the flow analysis scheme. Effect of jet velocity on the flow pattern down the jet was investigated.

  • PDF

Numerical Study on the Three-Dimensional Centrifugal Compressor Volute Flow (원심 압축기 벌류트 3차원 유동의 수치해석)

  • Yoon Ju-Sig;Park Ki-Cheol;Chang Keun-Shik;Bae Hwang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.3 s.246
    • /
    • pp.222-229
    • /
    • 2006
  • Three dimensional turbulent flow in the scroll volute of centrifugal compressor has been numerically investigated in this paper by solving the Navier-Stokes equations and $\kappa-\varepsilon$ equation model. The computational grid for the flow field of the scroll volute has been constructed based on the multi-block grid concept, which is good to avoid the central grid singularity as well as to promote grid stretching toward the volute wall. Numerical result has been obtained for both the two- and three- dimensions. For the latter flow, result of the scroll volute flow is compared with that of the straight conical volute. This comparison has sorted out the characteristic features of the three-dimensional scroll-type volute flow of centrifugal compressor.