• Title/Summary/Keyword: 3-Dimensional Convolutional Network

Search Result 39, Processing Time 0.019 seconds

Change Detection for High-resolution Satellite Images Using Transfer Learning and Deep Learning Network (전이학습과 딥러닝 네트워크를 활용한 고해상도 위성영상의 변화탐지)

  • Song, Ah Ram;Choi, Jae Wan;Kim, Yong Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.3
    • /
    • pp.199-208
    • /
    • 2019
  • As the number of available satellites increases and technology advances, image information outputs are becoming increasingly diverse and a large amount of data is accumulating. In this study, we propose a change detection method for high-resolution satellite images that uses transfer learning and a deep learning network to overcome the limit caused by insufficient training data via the use of pre-trained information. The deep learning network used in this study comprises convolutional layers to extract the spatial and spectral information and convolutional long-short term memory layers to analyze the time series information. To use the learned information, the two initial convolutional layers of the change detection network are designed to use learned values from 40,000 patches of the ISPRS (International Society for Photogrammertry and Remote Sensing) dataset as initial values. In addition, 2D (2-Dimensional) and 3D (3-dimensional) kernels were used to find the optimized structure for the high-resolution satellite images. The experimental results for the KOMPSAT-3A (KOrean Multi-Purpose SATllite-3A) satellite images show that this change detection method can effectively extract changed/unchanged pixels but is less sensitive to changes due to shadow and relief displacements. In addition, the change detection accuracy of two sites was improved by using 3D kernels. This is because a 3D kernel can consider not only the spatial information but also the spectral information. This study indicates that we can effectively detect changes in high-resolution satellite images using the constructed image information and deep learning network. In future work, a pre-trained change detection network will be applied to newly obtained images to extend the scope of the application.

An Efficient Hand Gesture Recognition Method using Two-Stream 3D Convolutional Neural Network Structure (이중흐름 3차원 합성곱 신경망 구조를 이용한 효율적인 손 제스처 인식 방법)

  • Choi, Hyeon-Jong;Noh, Dae-Cheol;Kim, Tae-Young
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.14 no.6
    • /
    • pp.66-74
    • /
    • 2018
  • Recently, there has been active studies on hand gesture recognition to increase immersion and provide user-friendly interaction in a virtual reality environment. However, most studies require specialized sensors or equipment, or show low recognition rates. This paper proposes a hand gesture recognition method using Deep Learning technology without separate sensors or equipment other than camera to recognize static and dynamic hand gestures. First, a series of hand gesture input images are converted into high-frequency images, then each of the hand gestures RGB images and their high-frequency images is learned through the DenseNet three-dimensional Convolutional Neural Network. Experimental results on 6 static hand gestures and 9 dynamic hand gestures showed an average of 92.6% recognition rate and increased 4.6% compared to previous DenseNet. The 3D defense game was implemented to verify the results of our study, and an average speed of 30 ms of gesture recognition was found to be available as a real-time user interface for virtual reality applications.

Machine Tool State Monitoring Using Hierarchical Convolution Neural Network (계층적 컨볼루션 신경망을 이용한 공작기계의 공구 상태 진단)

  • Kyeong-Min Lee
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.2
    • /
    • pp.84-90
    • /
    • 2022
  • Machine tool state monitoring is a process that automatically detects the states of machine. In the manufacturing process, the efficiency of machining and the quality of the product are affected by the condition of the tool. Wear and broken tools can cause more serious problems in process performance and lower product quality. Therefore, it is necessary to develop a system to prevent tool wear and damage during the process so that the tool can be replaced in a timely manner. This paper proposes a method for diagnosing five tool states using a deep learning-based hierarchical convolutional neural network to change tools at the right time. The one-dimensional acoustic signal generated when the machine cuts the workpiece is converted into a frequency-based power spectral density two-dimensional image and use as an input for a convolutional neural network. The learning model diagnoses five tool states through three hierarchical steps. The proposed method showed high accuracy compared to the conventional method. In addition, it will be able to be utilized in a smart factory fault diagnosis system that can monitor various machine tools through real-time connecting.

Bird sounds classification by combining PNCC and robust Mel-log filter bank features (PNCC와 robust Mel-log filter bank 특징을 결합한 조류 울음소리 분류)

  • Badi, Alzahra;Ko, Kyungdeuk;Ko, Hanseok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.1
    • /
    • pp.39-46
    • /
    • 2019
  • In this paper, combining features is proposed as a way to enhance the classification accuracy of sounds under noisy environments using the CNN (Convolutional Neural Network) structure. A robust log Mel-filter bank using Wiener filter and PNCCs (Power Normalized Cepstral Coefficients) are extracted to form a 2-dimensional feature that is used as input to the CNN structure. An ebird database is used to classify 43 types of bird species in their natural environment. To evaluate the performance of the combined features under noisy environments, the database is augmented with 3 types of noise under 4 different SNRs (Signal to Noise Ratios) (20 dB, 10 dB, 5 dB, 0 dB). The combined feature is compared to the log Mel-filter bank with and without incorporating the Wiener filter and the PNCCs. The combined feature is shown to outperform the other mentioned features under clean environments with a 1.34 % increase in overall average accuracy. Additionally, the accuracy under noisy environments at the 4 SNR levels is increased by 1.06 % and 0.65 % for shop and schoolyard noise backgrounds, respectively.

Morphological Analysis of Hydraulically Stimulated Fractures by Deep-Learning Segmentation Method (딥러닝 기반 균열 추출 기법을 통한 수압 파쇄 균열 형상 분석)

  • Park, Jimin;Kim, Kwang Yeom ;Yun, Tae Sup
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.8
    • /
    • pp.17-28
    • /
    • 2023
  • Laboratory-scale hydraulic fracturing experiments were conducted on granite specimens at various viscosities and injection rates of the fracturing fluid. A series of cross-sectional computed tomography (CT) images of fractured specimens was obtained via a three-dimensional X-ray CT imaging method. Pixel-level fracture segmentation of the CT images was conducted using a convolutional neural network (CNN)-based Nested U-Net model structure. Compared with traditional image processing methods, the CNN-based model showed a better performance in the extraction of thin and complex fractures. These extracted fractures extracted were reconstructed in three dimensions and morphologically analyzed based on their fracture volume, aperture, tortuosity, and surface roughness. The fracture volume and aperture increased with the increase in viscosity of the fracturing fluid, while the tortuosity and roughness of the fracture surface decreased. The findings also confirmed the anisotropic tortuosity and roughness of the fracture surface. In this study, a CNN-based model was used to perform accurate fracture segmentation, and quantitative analysis of hydraulic stimulated fractures was conducted successfully.

Enhanced 3D Residual Network for Human Fall Detection in Video Surveillance

  • Li, Suyuan;Song, Xin;Cao, Jing;Xu, Siyang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.12
    • /
    • pp.3991-4007
    • /
    • 2022
  • In the public healthcare, a computational system that can automatically and efficiently detect and classify falls from a video sequence has significant potential. With the advancement of deep learning, which can extract temporal and spatial information, has become more widespread. However, traditional 3D CNNs that usually adopt shallow networks cannot obtain higher recognition accuracy than deeper networks. Additionally, some experiences of neural network show that the problem of gradient explosions occurs with increasing the network layers. As a result, an enhanced three-dimensional ResNet-based method for fall detection (3D-ERes-FD) is proposed to directly extract spatio-temporal features to address these issues. In our method, a 50-layer 3D residual network is used to deepen the network for improving fall recognition accuracy. Furthermore, enhanced residual units with four convolutional layers are developed to efficiently reduce the number of parameters and increase the depth of the network. According to the experimental results, the proposed method outperformed several state-of-the-art methods.

Fast Motion Planning of Wheel-legged Robot for Crossing 3D Obstacles using Deep Reinforcement Learning (심층 강화학습을 이용한 휠-다리 로봇의 3차원 장애물극복 고속 모션 계획 방법)

  • Soonkyu Jeong;Mooncheol Won
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.2
    • /
    • pp.143-154
    • /
    • 2023
  • In this study, a fast motion planning method for the swing motion of a 6x6 wheel-legged robot to traverse large obstacles and gaps is proposed. The motion planning method presented in the previous paper, which was based on trajectory optimization, took up to tens of seconds and was limited to two-dimensional, structured vertical obstacles and trenches. A deep neural network based on one-dimensional Convolutional Neural Network (CNN) is introduced to generate keyframes, which are then used to represent smooth reference commands for the six leg angles along the robot's path. The network is initially trained using the behavioral cloning method with a dataset gathered from previous simulation results of the trajectory optimization. Its performance is then improved through reinforcement learning, using a one-step REINFORCE algorithm. The trained model has increased the speed of motion planning by up to 820 times and improved the success rates of obstacle crossing under harsh conditions, such as low friction and high roughness.

EPS Gesture Signal Recognition using Deep Learning Model (심층 학습 모델을 이용한 EPS 동작 신호의 인식)

  • Lee, Yu ra;Kim, Soo Hyung;Kim, Young Chul;Na, In Seop
    • Smart Media Journal
    • /
    • v.5 no.3
    • /
    • pp.35-41
    • /
    • 2016
  • In this paper, we propose hand-gesture signal recognition based on EPS(Electronic Potential Sensor) using Deep learning model. Extracted signals which from Electronic field based sensor, EPS have much of the noise, so it must remove in pre-processing. After the noise are removed with filter using frequency feature, the signals are reconstructed with dimensional transformation to overcome limit which have just one-dimension feature with voltage value for using convolution operation. Then, the reconstructed signal data is finally classified and recognized using multiple learning layers model based on deep learning. Since the statistical model based on probability is sensitive to initial parameters, the result can change after training in modeling phase. Deep learning model can overcome this problem because of several layers in training phase. In experiment, we used two different deep learning structures, Convolutional neural networks and Recurrent Neural Network and compared with statistical model algorithm with four kinds of gestures. The recognition result of method using convolutional neural network is better than other algorithms in EPS gesture signal recognition.

Permeability Prediction of Gas Diffusion Layers for PEMFC Using Three-Dimensional Convolutional Neural Networks and Morphological Features Extracted from X-ray Tomography Images (삼차원 합성곱 신경망과 X선 단층 영상에서 추출한 형태학적 특징을 이용한 PEMFC용 가스확산층의 투과도 예측)

  • Hangil You;Gun Jin Yun
    • Composites Research
    • /
    • v.37 no.1
    • /
    • pp.40-45
    • /
    • 2024
  • In this research, we introduce a novel approach that employs a 3D convolutional neural network (CNN) model to predict the permeability of Gas Diffusion Layers (GDLs). For training the model, we create an artificial dataset of GDL representative volume elements (RVEs) by extracting morphological characteristics from actual GDL images obtained through X-ray tomography. These morphological attributes involve statistical distributions of porosity, fiber orientation, and diameter. Subsequently, a permeability analysis using the Lattice Boltzmann Method (LBM) is conducted on a collection of 10,800 RVEs. The 3D CNN model, trained on this artificial dataset, well predicts the permeability of actual GDLs.

Evaluation of maxillary sinusitis from panoramic radiographs and cone-beam computed tomographic images using a convolutional neural network

  • Serindere, Gozde;Bilgili, Ersen;Yesil, Cagri;Ozveren, Neslihan
    • Imaging Science in Dentistry
    • /
    • v.52 no.2
    • /
    • pp.187-195
    • /
    • 2022
  • Purpose: This study developed a convolutional neural network (CNN) model to diagnose maxillary sinusitis on panoramic radiographs(PRs) and cone-beam computed tomographic (CBCT) images and evaluated its performance. Materials and Methods: A CNN model, which is an artificial intelligence method, was utilized. The model was trained and tested by applying 5-fold cross-validation to a dataset of 148 healthy and 148 inflamed sinus images. The CNN model was implemented using the PyTorch library of the Python programming language. A receiver operating characteristic curve was plotted, and the area under the curve, accuracy, sensitivity, specificity, positive predictive value, and negative predictive values for both imaging techniques were calculated to evaluate the model. Results: The average accuracy, sensitivity, and specificity of the model in diagnosing sinusitis from PRs were 75.7%, 75.7%, and 75.7%, respectively. The accuracy, sensitivity, and specificity of the deep-learning system in diagnosing sinusitis from CBCT images were 99.7%, 100%, and 99.3%, respectively. Conclusion: The diagnostic performance of the CNN for maxillary sinusitis from PRs was moderately high, whereas it was clearly higher with CBCT images. Three-dimensional images are accepted as the "gold standard" for diagnosis; therefore, this was not an unexpected result. Based on these results, deep-learning systems could be used as an effective guide in assisting with diagnoses, especially for less experienced practitioners.