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Abstract 

 
In the public healthcare, a computational system that can automatically and efficiently detect 
and classify falls from a video sequence has significant potential. With the advancement of 
deep learning, which can extract temporal and spatial information, has become more 
widespread. However, traditional 3D CNNs that usually adopt shallow networks cannot obtain 
higher recognition accuracy than deeper networks. Additionally, some experiences of neural 
network show that the problem of gradient explosions occurs with increasing the network 
layers. As a result, an enhanced three-dimensional ResNet-based method for fall detection 
(3D-ERes-FD) is proposed to directly extract spatio-temporal features to address these issues. 
In our method, a 50-layer 3D residual network is used to deepen the network for improving 
fall recognition accuracy. Furthermore, enhanced residual units with four convolutional layers 
are developed to efficiently reduce the number of parameters and increase the depth of the 
network. According to the experimental results, the proposed method outperformed several 
state-of-the-art methods. 
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1. Introduction 

Fall is an involuntary, unintended significant postural change that occurs in the elderly, 
patients, athletes, laborers, and even healthy persons, resulting in deterioration of human health. 
[1]. Due to the obvious physical weakness that occurs with aging, the elderly account for the 
majority of fatal falls. According to a report, about 1.6 million older individuals in the United 
States suffer from injuries of falls each year [2]. Nowadays, fall is the second common cause 
of mortality. Fall will not only cause physical and psychological harm to the elderly, but also 
has a serious impact on the family and society, as shown in Fig. 1. As a result, developing a 
real-time and effective system to detect fall event is very critical for the elderly. Recently, 
numerous researches have been conducted in order to build an intelligent monitoring system 
for the elderly that can detect falls automatically and instantaneously. Nowadays, fall detection 
methods based on vision have gained more attention than those based on wearable sensors and 
ambient sensors, due to greater need for user-friendliness, such as simplicity of use, non-
invasiveness, and minimally affecting the user's regular activities. As a consequence, fall 
detection systems based on vision will be more universality and feasibility in the future, due 
to comprehensive monitoring information, non-contact surveillance, and a monitoring 
environment with no electromagnetic interference [3]. 
 

 
 

Fig. 1. Falling Complications 
 

Traditional methods based on hand-crafted features and novel methods based on deep 
learning are two kinds of vision-based fall detection systems. Compared with traditional 
methods, CNNs [4] can extract features automatically and obtain greater recognition accuracy. 
Thus, deeper networks have increasingly been applied to recognize a fall event from a video. 
However, traditional 3D CNN that usually adopts shallow networks can’t obtain higher 
recognition accuracy than deeper networks. Simultaneously, as the depth of 3D CNN rises, 
more model parameters and gradient explosions are included, which will increase the 
complexity of the constructed model. 

In the paper, we propose a novel three-dimensional ResNet-based method for fall detection 
(3D-ERes-FD) to address the aforementioned issues. To efficiently retain temporal 
information in a fall video and improve detection performance, 3D ResNet is utilized to extract 
spatio-temporal features and further increases the feature’s representativeness in the network. 
Besides, enhanced residual unites are constructed to minimize the number of parameters as the 
network layer increases. 

The remaining paper is organized as follows. Section 2 briefly reviews the related work. 
Section 3 outlines the details of the proposed fall detection method using the enhanced residual 
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units. In Section 4, different experimental results compared with other fall detection methods 
are provided. Finally, Section 5 concludes the paper. 

2. Related Work 
Fall detection is a critical and attractive research topic in the field of public healthcare to 
improve healthcare and medical services. Generally, fall detection methods are divided into 
three categories based on the equipment involved: wearable sensors, ambient sensors, and 
cameras.  

Wearable sensors, such as accelerometers, gyroscopes, and electromyography, are 
generally connected to the chest, waist, or wrist to gather data. Recently, to decrease false 
alarms, a comprehensive fall detection system based on accelerometers and smart phones is 
suggested, the threshold-based technique and multiple kernel learning support vector machine 
are used [5]. To develop a wearable airbag, accelerometer and gyroscope sensor are utilized 
to collect both acceleration and angular velocity signals to trigger inflation of the airbag [6]. 
Additionally, the feature extraction and pattern recognition of surface electromyography 
(sEMG) can be adopted to detect muscles electrical changes in falls [7]. Although the wearable 
sensors are low cost and convenient, the permanent wearable manner is not pleasant for people. 

Ambient sensors primarily gather data from monitoring surroundings, including sound, 
vibration, pressure and light intensity. In [8], a novel floor acoustic sensor is utilized to record 
acoustic waves transmitted through the floors, and then the acoustic waves can be classified 
by a two class Support Vector Machine for detecting a fall event. Due to the fact that pain can 
be immediately reflected through sound, the hidden Markov model based on component 
analysis (HMM-CA) is adopted to separate overlapping sound signals [9]. Moreover, because 
the pressure sensor has reliable operation and stable performance, a novel smart sensing 
technique with piezoresistive pressure sensors is developed to trigger an alarm when a fall 
event occurs [10]. Despite the ambient sensors can protect individual privacy, all surfaces need 
to be generally covered with these sensors, which is laborious and easily exposed to noise. 

Since video cameras have numerous advantages over wearable sensors and ambient sensors, 
including rich information, non-invasive collection, no electromagnetic interference, pleasant 
user experience, low cost, and so on, fall detection methods based on cameras are widely 
adopted in recent years. Generally, cameras are used to separate human subjects from scenes 
collected by RGB cameras, Kinect cameras, thermal sensors, or even numerous cameras [11]. 
Traditionally, fall detection methods based on hand-crafted features mainly focus on tracing 
the head trajectories, body shape, or body posture for detecting a fall event. These methods 
about tracing the head trajectories are premised on the theory that vertical motion is stronger 
than horizontal motion when fall occurs. Moreover, the tracked major joints of the human 
body are analyzed by a pose-invariant randomized decision tree, then the 3D trajectory of the 
head joint is input into the SVM classifier to determine falls [12]. Due to the significance of 
the motion information, motion history image and code-book background subtraction are 
applied to detect large movement, and particle filters based on the magnitude of the movement 
information can track the head. Then, falls can be detected through the three dimensional 
horizontal and vertical velocities of the head [13]. In contrast to tracing head trajectories, 
methods based on human body shape and posture concentrate on the transition from standing 
to laying when a fall event happens. Hidden Markov Model is applied to retrieve numerous 
characteristics from the silhouette, including the height of the bounding box and the magnitude 
of the motion vector, to effectively identify a fall event [14]. Furthermore, several cameras are 
used to extract the 3D shape of the person, and the multi-camera vision system for recognizing 
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and tracking humans uses a silhouette warping technique to convey visual information 
between overlapping cameras [15]. However, all known video-based methods involving 
extracting the subject first are prone to being affected by background noise. 

Recently, fall detection systems are based on machine learning algorithms and deep 
learning algorithms, such as SVM and CNN. In [16], 2D CNN is straightway utilized to obtain 
human shape features from the frames for distinguishing a fall event. Whereas, the information 
between video frames cannot be fully utilized by CNN, which will have an impact on detection 
performance. Thus, the fall detection methods based on recurrent neural network (RNN) are 
very effective for sequential data to get more attention gradually. In [17], RNN and Long Short 
Term Memory (LSTM) are employed to process skeleton extracted by CNN, and the output 
of RNN can be utilized to distinguish a fall event. Besides, optical flow technique can also be 
utilized to better portray the relationship between video frames. To utilize preprocessed video 
frames, optical flow images can be input into wide residual network to extract features for 
detecting a fall event [18]. Optical flow images are used as input to CNN, along with the next 
three-step training process, to simulate video motion and make the system scenario 
independent [19]. Except for optical flow, many fall detection methods attempt to combine 
different preprocessing method to improve detection performance. In [20], a multi-stream 
CNN architecture for human-related areas is presented, which can encode appearance, motion, 
and the captured tubes of the human-related regions. However, the above methods mainly 
adopt 2D CNN as extractor, which cannot make full use of temporal correlation. As a 
consequence, 3D network is developed to effectively capture temporal and spatial features 
over each frame. In [21], 3D CNN is first adopted to capture the motion information contained 
in consecutive frames, which can extract features from both the spatial and temporal 
dimensions. Simultaneously, with the development of LSTM, 3D CNN is utilized to obtain 
motion features from temporal sequence, and then a spatial visual attention strategy based on 
LSTM is adopted to detect falls [22]. To enrich more input, multi-stream visual characteristics 
are integrated into 3D CNN network for action identification in clipped videos [23]. 
Nevertheless, traditional 3D CNN that usually adopts shallow networks cannot obtain higher 
recognition accuracy than deeper networks. Furthermore, the problem of gradient explosion 
will occur with blindly increasing the depth of the network. 

To overcome the above limitation, a fall detection method based on enhanced 3D ResNet50 
is presented to directly extract spatio-temporal information from videos for detecting falls. In 
our method, a 50-layer 3D residual network is adopted to deepen network for obtaining a better 
fall recognition accuracy. Additionally, enhanced residual units with four convolutional layers 
are offered to reduce the number of parameters while increasing the network's layer. 

3. Proposed Method 
In this paper, a novel method is proposed to detect fall events in video effectively, which is 
based on residual neural network using spatio-temporal 3D kernels. The architecture of the 
proposed 3D-ERes-FD method is shown in Fig. 2. Firstly, original video is processed to obtain 
cropped sequence, which can eliminate some redundant information. Then, 3D residual CNN 
is considered as extractor to obtain features from cropped sequence. In the end, the softmax 
classifier is adopted to classify the optimal features for distinguishing fall events. 
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Fig. 2. Architecture of the proposed 3D-ERes-FD  

3.1 3D Convolutional Neural Network 
In 2D convolutional neural network, 2D convolution is performed to extract features from 
local neighborhood on feature maps in the previous layer. As shown in Fig. 3, the convolution 
kernel (filter) slides over the spatial dimensions of the input image, the slide window is 
convolved with values in the convolution kernel each time to obtain a value of output. 
Formally, 2D CNN is as follows: 

( )
( )( )( )-1 -1

-10 0
i iP Q x p y qxy pq

ij ijm iji mm p q
v f w v b+ +

= =
= +∑ ∑ ∑              (1) 

where the value at location ( , )x y  of the thj feature map in the thi  layer can be represented by 
xy
ijv , the activation function can be represented by ( )f  , the thj  bias in the thi  layer can be 

represented by ijb , the vertical (spatial) and horizontal (spatial) extents can be represented iP ,
iQ , the index of the set of feature maps from the ( -1)thi  layer is presented by m , the value of 

the filter cube at location ( , )p q  connected to the thm  feature map in the previous layer is 
represented by pq

ijmw , and the value at location ( )x+ p,y + q  in the thm  feature map in the 
( -1)thi  layer is represented by ( )

( )( )
-1
x p y q
i mv + + .  

In 2D CNN, convolutions are implemented to the 2D feature maps to obtain features based 
solely on the spatial dimension. In video analysis problems, it’s not appropriate to collect 
motion information stored in numerous adjacent frames using 2D convolutions. To preserve 
temporal information effectively in a fall video, the spatio-temporal features are extracted 
using a 3D CNN. In contrast to 2D CNN, a series of video frames are considered as input for 
3D CNN to add a depth dimension, which can be conducted both spatially and temporally.  
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Fig. 3. 2D convolution 
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Fig. 4. 3D convolution  

 
As shown in Fig. 4, feature maps of the convolution layer are related to several consecutive 

frames in the former layer, collecting motion information. As a consequence, three-
dimensional ResNet-based method for fall detection (3D-ERes-FD) is proposed. The main 
component of 3D-ERes-FD is the 3D convolutional layer. Formally, the value v  at position 
( , , )x y z  is given as: 

( )
( )( )( )( )-1 -1 -1

-10 0 0
i i iP Q S x p y q z sxyz pqs

ij ijm iji mm p q s
v f w v b+ + +

= = =
= +∑ ∑ ∑ ∑   (2) 

in which the vertical (spatial), horizontal (spatial), and temporal extents of the filter cube iw  
in thi  the layer can respectively be represented by iP , iQ , iS . The set of feature maps from the 
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( -1)thi  layer is indexed by m , and the value of the filter cube at location ( , , )p q s  connected 
to the thm  feature map in the previous layer can be represented. The value at location 
( , )x+ p,y + q z r+  in the thm  feature map in the ( -1)thi  layer can be represented by 

( )
(x+ p)(y+q)(z+r)
i-1 mv . 

3.2 The Enhanced 3D ResNet 
Generally, ResNet is commonly used to deepen the network layer. The architecture of 
traditional residual unit is illustrated in Fig. 5(a). A basic residual unit mainly includes three 
convolutional layers, which are respectively two 1 1 1× ×  convolutional layers and a 3 3 3× ×  
convolutional layer following a batch normalization and a ReLU. And the top of the residual 
unit is connected to the last ReLU by a shortcut pass. In the basic residual unit, the input can 
be represented by x , the output can be represented by ( )tH x , and the residual can be 
represented by ( )tF x . Nevertheless, these 1 1 1× ×  convolutional layers that can reduce 
dimensionality are not useful for improving the model performance. Therefore, to improve 
recognition accuracy, the enhanced residual unit is designed to automatically obtain optimal 
features from video frames. In enhanced residual unit, a convolutional layer is added to 
improve the ability of feature extraction. The difference between traditional residual unit and 
enhanced residual unit is that the enhanced residual unit adopts two middle 3 3 3× ×  
convolutional layers. 

In the proposed 3D-ERes-FD, the most essential unit is enhanced residual unit, and the 
architecture of enhanced residual unit is illustrated in Fig. 5(b). A basic enhanced residual unit 
mainly includes four convolutional layers, which are respectively two 1 1 1× ×  convolutional 
layers and two 3 3 3× ×  convolutional layers following a batch normalization and a ReLU. 
The capacity to extract features can be improved by increasing the 3 3 3× ×  convolutional 
layer. To be specific, the enhanced residual unit used in 3D-ERes-FD is computed by: 

{ }( ) ( )( )( )4 3 2 1,e iF x W W W W W xσ σ σ= ⋅ ⋅ ⋅ ⋅                                      (3) 

in which the input of the residual unit can be represented by x , the weight in the thi  layer can 
be represented by iW , the residual is represented by ( )eF x , and the ReLU function σ  is 
computed by: 

( ) ( )max 0,x xσ =                                                          (4) 
And then the input x is added through a shortcut, and finally output can be obtained as: 

{ }( ),e i sy F x W W x= + ⋅                                                     (5) 

where sW  is the weight for changing the number of channels. 
Additionally, after adding a 3 3 3× ×  convolutional layer, model parameters in enhanced 

residual unit must be larger than that in the traditional residual unit. Accordingly, to limit the 
number of model parameters as much as feasible, the number of channels in two 3 3 3× ×  
convolutional layers are set to half of the preceding convolutional layer. As shown in Fig. 5, 
c  is a constant that indicates the number of channels in residual unit. In each layer, the number 
of parameters can be obtained by 

outputN k k k p q= × × × ×                                                     (6) 
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in which k  is the size of convolutional kernel, p  and q  are respectively the number of input 
channels and output channels. 
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Fig. 5. Residual unit and enhanced residual unit 

 
To compare the number of parameters intuitively, 2c  is assumed as the number of input 

channels in the residual unit. In each convolutional layer of traditional residual unit, the 
number of parameters can be calculated, respectively 

1 1 1 1 2 2tN c c= × × × ×                                                         (7) 

2 3 3 3 2 2tN c c= × × × ×                                                        (8) 

3 1 1 1 2 8tN c c= × × × ×                                                          (9) 
2

1 2 3 128t t t tN N N N c= + + =                                                   (10) 
where 2128tN c=  represents the number of parameters in the traditional residual unit. In each 
convolutional layer of enhanced residual unit, the number of parameters can be calculated, 
respectively 

1 1 1 1 2 2eN c c= × × × ×                                                        (11) 

2 3 3 3 2eN c c= × × × ×                                                        (12) 

3 3 3 3eN c c= × × × ×                                                          (13) 

4 1 1 1 8eN c c= × × × ×                                                          (14) 
2

1 2 3 4 93e e e e eN N N N N c= + + + =                                             (15) 
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where 293eN c=  represents the number of parameters in the enhanced residual unit. Hence, 
the enhanced residual unit contains fewer parameters than the traditional residual unit, which 
is useful to reduce the network complexity. 

The proposed architecture of enhanced 3D ResNet is shown in Table 1, in which s  in 
brackets indicates the stride. The input of the enhanced 3D ResNet is a six-frame RGB video 
clips. An image cube comprised of key frames split from a video sequence is input into the 
enhanced 3D-ResNet. The enhanced 3D ResNet consists of 5 residual units, including Res1, 
Res2, Res3, Res4 and Res5. In order to perform the downsampling, the step of the convolution 
kernel will be set to 2 in Res2_1, Res3_1, Res4_1 and Res5_1.  

 
Table 1. Architecture of enhanced 3D ResNet 

Layer name Architecture 
Res1 7 7 7 6× × ， 

Pooling  ( )3 3 3  1 2 2 s× × × ×，  

Res2_x 

1 1 1 64
3 3 3 32

3
3 3 3 32
1 1 1 256

× × 
 × × ×
 × ×
 
× × 

，

，

，

，

 

Res3_x 

1 1 1128
3 3 3 64

4
3 3 3 64
1 1 1 512

× × 
 × × ×
 × ×
 
× × 

，

，

，

，

 

Res4_x 

1 1 1 256
3 3 3128

6
3 3 3128
1 1 11024

× × 
 × × ×
 × ×
 
× × 

，

，

，

，

 

Res5_x 

1 1 1 512
3 3 3 256

3
3 3 3 256
1 1 1 2048

× × 
 × × ×
 × ×
 
× × 

，

，

，

，

 

For identifying a fall event, the cross-entropy loss error function 1J  is derived as: 

( ) ( )1 2
1

1 log 1 log 1
n

i i i i
i

J t p t p W
n

λ
=

= −  ⋅ + − −  + ∑          (16) 

in which it and ip are respectively the ground truth label and predicted classification result of 
the thi  sample, n  is the total number of the samples and λ  is the regularization coefficient. 

4. Evaluation Experiments 

All of the testing are performed on a GPU server with a 3.40 GHz Intel i7-6700 processor, 
16GB of RAM, and two RTX 2080ti GPU accelerators. The proposed approach is mostly 
developed in Python by using the pytorch framework, and its performance is validated on 
several public fall datasets. 
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4.1 Dataset 
Montreal dataset [24]: The dataset includes 24 scenarios captured with eight video cameras. 
Both fall and non-fall incidents are included in the first 22 scenarios. Only non-fall incidents 
are included in the last two scenarios. Some frames of Montreal dataset are shown in Fig. 6. 
 

Fig. 6. Some frames of Montreal dataset 
 

Le2i fall dataset [25]: Le2i is a RGB video set of human body actions recorded by a single 
camera. The video frame rate is 25 frames per second, with 320×240 pixels. Homes, coffee 
room, and office are among the scenarios recorded in the database, which includes 130 falls 
and normal activities. Some frames of Le2i fall dataset are shown in Fig. 7. 
 

Fig. 7. Some frames of Le2i fall dataset 
 

UR fall dataset [26]: We utilize the UR fall dataset from the University of Rzeszow's 
Computational Modelling Department in 2014. The collection sets are comprised of RGB and 
depth images captured by two Microsoft Kinect cameras with a resolution of 640×480 pixels, 
as well as accelerometer data. In this work, RGB images are utilized from camera 0 in the UR 
fall dataset, which contains 70 videos, respectively 30 falls and 40 normal activities. Walking, 
crouching, bending, and other typical daily actions are examples of non-fall frames. Fall 
frames mostly contain participant-performed fall actions. Some frames of UR fall dataset are 
shown in Fig. 8. 
 

Fig. 8. Some frames of UR fall dataset 

4.2 Performance Metrics 
Fall detection can be usually considered as binary classification to distinguish whether or not 
abnormal behavior occurs. Since the probability of falling events is much lower than that of 
non-falling, the performance metrics of fall detection must be unaffected by imbalanced 
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distribution. More suitable performance to evaluate the effectiveness of such a classification 
method is as follow. 

Precision is the percentage of precisely recognized non-fall instances among all detected 
non-fall instances, i.e. 

TPPrecision
TP FP

=
+

                                                  (17) 

where TP is the number of non-fall instances accurately identified as normal, FP is the number 
of non-fall instances wrongly identified as abnormal. 

Recall/sensitivity is the percentage of successfully recognized non-fall instances among all 
actual non-falls instances, i.e. 

TPSensitivity
TP FN

=
+

                                                  (18) 

where FN is the number of fall instances wrongly classified as normal.  
Specificity is the percentage of properly recognized fall instances among all actual non-fall 

instances: 
TNSpecificity

TN FP
=

+
                                                  (19) 

where TN is the number of fall instances accurately identified as abnormal. 
The percentage of properly recognized falls and non-fall instances can be known as 

accuracy: 
TN TPAccuracy

TN TP FP FN
+

=
+ + +

                                      (20) 

F_score is a harmonic mean of recall and precision, which is the most significant 
assessment metric for the overall performance of detection algorithms, i.e. 

2 Recall PrecisionF score
Recall Precision−

×
=

+
                                        (21) 

4.3 The Verification on UR Dataset 
In proposed method, supervised learning is utilized, and a large number of weight parameters 
between the input and the output in enhanced 3D ResNet will be learnt. With minimizing the 
error function, optimal parameters of the enhanced 3D ResNet model can be obtained. In 
addition, continuous frames extracted from a fall video are taken as input to the enhanced 3D 
ResNet model to eliminate redundant information. Specifically, the hyper parameters are 
shown in Table 2. The dropout rate is adopted at 0.5 to avoid over-fitting, the learning rate is 
initially set at 0.0001, and the SGD optimizer is used to update the parameters.  

 
Table 2. Parameter setting 

Hyper parameter Value 
Learning rate 0.0001 
Weight_delay 0.00003 
Dropout rate 0.5 
Batch_size 8 
Optimizer SGD 

 
We further verify the advantage of the proposed 3D-ERes-FD, as compared with 3D-Res-

FD which utilizes traditional residual units. The metrics of two different methods are 
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illustrated as Table 3, the model size of the proposed method is 897.5 MB, which is obviously 
smaller than that of the method based on 3D ResNet-50. The results can verify that the number 
of parameters can be reduced by adjusting the number of convolutional channels. However, in 
the case of deepening the network, the proposed method has a slightly longer average 
processing time than the method based on 3D ResNet-50, it is acceptable in a tolerable range 
based on the increasing depth of our network. 

 
Table 3. Metrics of different methods on UR fall dataset 
Methods Model size Average time/batch 

3D ResNet50 897.5MB 2.73s 
Proposed method 836.5MB 3.05s 

 
Fig. 9. The loss curve of the training process. 

 
Additionally, Fig. 9 displays cross entropy loss curves of two methods including 3D-ERes-

FD and 3D-Res-FD in training process. As shown in Fig. 9, the proposed method obtains faster 
decay by using the enhanced residual blocks, especially in the first epoch at the beginning of 
training. In addition, the cross entropy loss value of 3D-ERes-FD is significantly lower than 
that of 3D-Res-FD, which can demonstrate that the enhanced residual block provides better 
learning ability. Furthermore, Table 4 shows the model performance on the UR fall detection 
dataset with respect to accuracy etc. As shown in Table 4, performance of the proposed 
method is better performance than the 3D ResNet50. In particular, the accuracy is obviously 
increasing. These results thus confirm that, enhanced 3D ResNet can obtain spatio-temporal 
features with fewer parameters, and can further deepen the network to improve fall recognition 
accuracy. 

 
Table 4. Comparison of different methods on UR fall dataset 

Methods Precision Sensitivity Specificity Accuracy F_score 
3D ResNet50 0.95 0.904 0.926 0.914 0.926 

Proposed method 1.0 0.933 1.0 0.971 0.965 
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4.4 The State-of-the-art Methods 
To evaluate the effectiveness of the proposed 3D-ERes-FD, we compare the metrics, such as 
precision, sensitivity, specificity, accuracy and F_score, with existing methods based on the 
public fall detection datasets. 

Montreal dataset: Kun et al. [27] create a new enhanced feature called HLC by combining 
HOG, LBP, and deep features, and the classification can be determined by two SVM models. 
Feng et al. [28] use respectively the YOLO v3 and Deep-Sort method to detect and track the 
pedestrians, and VGG16 is adopted to obtain the effective features, which can be classified by 
softmax classifier for recognizing fall event. Table 5 illustrates the performance comparison 
on Montreal dataset with respect to sensitivity and specificity, it’s obvious that our proposed 
method can achieve better performance. 

 
Table 5. Comparison of proposed method with existing methods on Montreal dataset 

Methods Sensitivity Specificity 
Kun et al. [27] 0.937 0.920 
Feng et al. [28] 0.935 0.916 

Proposed method 0.947 0.990 
 
Le2i dataset: According to features like fall angle, aspect ratio, and silhouette height, 

Chamle et al. [29] apply gradient boosting classifier to differentiate falls. Poonsri et al. [30] 
employ a mixture of Gaussian models and PCA to calculate the orientation, aspect ratio and 
area ratio for determining falls. Vishnu et al. [31] employ 3D-CNN to model both the 
appearance and motion simultaneously for obtaining effective features, and these features of 
conv5 layers can be categorized by polynomial support vector machine. Due to the residual 
unit, the network of our proposed method is deeper, and the performance will be better. As 
shown in Table 6, comparison of the proposed method with two existing computer vision-
based methods [29], [30], [31] on Le2i dataset is given, it’s obvious that our proposed method 
can achieve better performance. 

 
Table 6. Comparison of proposed method with existing methods on Le2i dataset 

Methods Precision Sensitivity F_score 
Chamle et al. [29] 0.794 0.843 0.818 
Poonsri et al. [30] 0.891 0.931 0.911 
Vishnu et al. [31] 0.815 0.930 0.868 
Proposed method 0.916 0.937 0.926 

 
UR dataset: In order to identify the human fall incidents, existing computer vision-based 

algorithms explore several aspects of human motions in the UR dataset. Yun et al. [32] focus 
on the analysis of human shapes by computing occupancy regions around the body's gravity 
center and extracting their angles, these features based on human shapes can be classified by 
SVM to distinguish fall events. Harrou et al. [33] define five lines from the silhouette's center 
of gravity to obtain five partial areas of human body, and combine the MEWMA charting 
statistic and SVM to discriminate fall events. Feng et al. [28] use respectively the YOLO v3 
and Deep-Sort method to detect and track the pedestrians, and VGG16 is adopted to obtain the 
effective features, which can be classified by softmax classifier for recognizing fall event. Li 
et al. [34] adopt an unsupervised model based on auto-encoder, including three convolution 
layers, three deconvolution layers and LSTM, and the reconstructed error can be adopted to 
compute fall score to recognize fall events. In [35], the Mask-RCNN is used to extract the 
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human body contour from each detected binary picture, and the output of each binary image's 
final convolutional layer of the VGG16 is fed into the attention-guided Bi-directional LSTM 
model for detecting fall events. The accuracy, F score, precision, and specificity of the 
proposed method on the UR dataset are clearly greater than those of other methods, as shown 
in Table 7, which can fully prove the effectiveness of the proposed algorithm. 

 
Table 7. Comparison of proposed method with existing methods on UR fall dataset 

Methods Precision Sensitivity Specificity Accuracy F_score 
Yun et al. [32] 0.830 0.980 0.894 0.940 0.900 

Harrou et al. [33] 0.936 1.0 0.949 0.966 0.952 
Feng et al. [28] 94.8 0.914   0.931 

Li et al. [34] 0.897 0.913 0.974 0.958 0.947 
Chen et al. [35] 1.0 0.918 1.0 0.967 0.948 

Proposed method 1.0 0.933 1.0 0.971 0.965 
 
As validated in the experiments, our proposed method can further improve recognition 

accuracy on three public datasets. Compared with these methods based on traditional features, 
due to the ability for extracting features automatically, our proposed method is clearly more 
advantageous with respect to precision, specificity, accuracy and F_score. Furthermore, due 
to enhanced residual units with four convolutional layers, the number of parameters can be 
effectively reduced and the depth of the network can be deepened, thus, our proposed method 
can achieve better performance than those methods based on 3D-CNN. Additionally, 
compared with the methods based on LSTM, due to unique 3D spatial structure in proposed 
enhanced residual units, the proposed method is more suitable to obtain spatio-temporal 
features from several video frames than most methods based on LSTM, which can be further 
proved in the experiments. 

5. Conclusion 
This paper proposes a unique 50-layer 3D ResNet network and enhanced residual unit-based 
residual unit for fall detection. The 50-layer 3D enhanced ResNet is used as an extractor to 
deepen the network and improve fall identification accuracy. Additionally, it is recommended 
that the enhanced residual unit be used to reduce the number of convolutional channels and 
parameters. The experimental results show that the 3D-ERes-FD can successfully achieve 
accurate detection performance when compared to other advanced methods. 
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