• Title/Summary/Keyword: 3-D visualization

Search Result 1,000, Processing Time 0.026 seconds

Optimization for Large-Scale n-ary Family Tree Visualization

  • Kyoungju, Min;Jeongyun, Cho;Manho, Jung;Hyangbae, Lee
    • Journal of information and communication convergence engineering
    • /
    • v.21 no.1
    • /
    • pp.54-61
    • /
    • 2023
  • The family tree is one of the key elements of humanities classics research and is very important for accurately understanding people or families. In this paper, we introduce a method for automatically generating a family tree using information on interpersonal relationships (IIPR) from the Korean Classics Database (KCDB) and visualize interpersonal searches within a family tree using data-driven document JavaScript (d3.js). To date, researchers of humanities classics have wasted considerable time manually drawing family trees to understand people's influence relationships. An automatic family tree builder analyzes a database that visually expresses the desired family tree. Because a family tree contains a large amount of data, we analyze the performance and bottlenecks according to the amount of data for visualization and propose an optimal way to construct a family tree. To this end, we create an n-ary tree with fake data, visualize it, and analyze its performance using simulation results.

The impact of Google SketchUp on spatial ability and 3D geometric thinking of 7th grade students in volume measurement of solid figures (공간 능력과 공간 기하적 사고에서 SketchUp활용의 효과 -중학교 1학년 입체도형의 측정 단원을 중심으로-)

  • Lee, Hyun Hui;Kim, Rae Young
    • The Mathematical Education
    • /
    • v.52 no.4
    • /
    • pp.531-547
    • /
    • 2013
  • The purpose of the study is to examine how effects of activities using Google SketchUp on students' spatial ability and 3D geometric thinking in measuring the volume of solid figures. By comparing the results from pre- and post-tests between the experimental group and control group, we found that activities using Google SketchUp help students improve their spatial ability in the spatial orientation and visualization. In addition, more than half students in the experimental group moved from level 4 up to level 7 in thinking process of measuring the volume in terms of Battista(2004)'s levels. This study suggests that the instruction with Google SketchUp can help to improve students' spatial ability and 3D geometric thinking in the regular class in middle school. In addition, SketchUp can be an advanced technological tool to support students' self-directed learning, which create an efficient educational environment and a great opportunity to learn geometry in an effective manner.

Using Omnidirectional Images for Semi-Automatically Generating IndoorGML Data

  • Claridades, Alexis Richard;Lee, Jiyeong;Blanco, Ariel
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.5
    • /
    • pp.319-333
    • /
    • 2018
  • As human beings spend more time indoors, and with the growing complexity of indoor spaces, more focus is given to indoor spatial applications and services. 3D topological networks are used for various spatial applications that involve navigation indoors such as emergency evacuation, indoor positioning, and visualization. Manually generating indoor network data is impractical and prone to errors, yet current methods in automation need expensive sensors or datasets that are difficult and expensive to obtain and process. In this research, a methodology for semi-automatically generating a 3D indoor topological model based on IndoorGML (Indoor Geographic Markup Language) is proposed. The concept of Shooting Point is defined to accommodate the usage of omnidirectional images in generating IndoorGML data. Omnidirectional images were captured at selected Shooting Points in the building using a fisheye camera lens and rotator and indoor spaces are then identified using image processing implemented in Python. Relative positions of spaces obtained from CAD (Computer-Assisted Drawing) were used to generate 3D node-relation graphs representing adjacency, connectivity, and accessibility in the study area. Subspacing is performed to more accurately depict large indoor spaces and actual pedestrian movement. Since the images provide very realistic visualization, the topological relationships were used to link them to produce an indoor virtual tour.

Volumetric Data Encoding Using Daubechies Wavelet Filter (Daubechies 웨이블릿 필터를 사용한 볼륨 데이터 인코딩)

  • Hur, Young-Ju;Park, Sang-Hun
    • The KIPS Transactions:PartA
    • /
    • v.13A no.7 s.104
    • /
    • pp.639-646
    • /
    • 2006
  • Data compression technologies enable us to store and transfer large amount of data efficiently, and become more and more important due to increasing data size and the network traffic. Moreover, as a result of the increase of computing power, volumetric data produced from various applied science and engineering fields has been getting much larger. In this Paper, we present a volume compression scheme which exploits Daubeches wavelet transform. The proposed scheme basically supports lossy compression for 3D volume data, and provides unit-wise random accessibility. Since our scheme shows far lower error rates than the previous compression methods based on Haar filter, it could be used well for interactive visualization applications as well as large volume data compression requiring image fidelity.

Comparison of Polymer Electrolyte Membrane Fuel Cell performance obtained by 1D and CFD simulations (1D와 CFD(Computational fluid dynamic) 시뮬레이션을 통한 PEMFC(Polymer Electrolyte Membrane Fuel Cell) 성능 비교)

  • Wonwoo Jeon;Sehyeon An;Jaewan Yang;Jiwon Lee;Hyunbin jo;Eunseop Yeom
    • Journal of the Korean Society of Visualization
    • /
    • v.21 no.3
    • /
    • pp.49-56
    • /
    • 2023
  • The Polymer electrolyte membrane fuel cell (PEMFC) operates at ambient temperature as a low-temperature fuel cell. During its operation, voltage losses arise due to factors such as operating conditions and material properties, effecting its performance. Computational simulations of fuel cells can be categorized into 1D simulation and CFD, chosen based on their specific application purposes. In this study, we carried out an analysis validation using 1D geometry and compared its performance with the results from 2D geometry analysis. CFD allows for the representation of pressure, velocity distribution, and fuel mass fraction according to the geometry, enabling the analysis of current density. However, the 1D simulation, simplifying governing equations to reduce time cost, failed to accurately account for fuel distribution and changes in fuel concentration due to fuel cell operations. As a result, it showed unrealistic results in the cell voltage region dominated by concentration loss compared to CFD.

Study on the Expression of Sensory Visualization through AR Display Connection - Focusing on Eye Tracking (AR 디스플레이 연결을 통한 감각시각화에 대한 표현 검토)

  • Ma Xiaoyu
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.2
    • /
    • pp.357-363
    • /
    • 2024
  • As AR display virtual technology enters public learning life extensively, the way in which reality and virtual connection are connected is also changing. The purpose of this paper is to study the expression between the 3D connection sensory information visualization experience and virtual reality enhancement through the visual direction sensory information visualization experience of the plane. It is analyzed by examining the basic setting method compared to the current application of AR display and flat visualization cases. The scope of this paper is to enable users to have a better experience through the relationship with sensory visualization, centering on eye tracking technology in the four categories of AR display connection design: gesture connection, eye tracking, voice connection, and sensor. Focusing on eye tracking technology through AR display interaction and current application and comparative analysis of flat visualization cases, the geometric consistency of visual figures, light and color consistency, combination of multi-sensory interaction methods, rational content display, and smart push presented sensory visualization in virtual reality more realistically and conveniently, providing a simple and convenient sensory visualization experience to the audience.

Building a Stereoscopic Display System for 3-D Spatial Data Analysis (3차원 공간 자료 분석을 위한 입체형 시각화 시스템 구축)

  • Lee, Doo-Sung
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.2
    • /
    • pp.105-108
    • /
    • 2004
  • Immersive virtual reality has been used in areas of oil and gas exploration for visualization and analysis of various spatial data, such as wireline logs, 3-dimensional seismic data volume, formational boundaries, fault, and some other reservoir characteristics. Although virtual reality is a valuable tool in this area, in most cases, it requires a large budget. This paper describes the construction of a single screen, passive stereo, virtual reality, display system based on commodity, or otherwise, low-cost components. The core elements of the system are a PC with a two-channel 3-D graphics, two projects, and a polarized stereo. There are many options available for the major elements of such a system, and the basic system can be modified or adapted to many different styles of use.

SLM using GIS data formats for 3D virtual model of research (SLM 포맷을 이용한 GIS 데이터의 3D 가상모델에 대한 연구)

  • Han, Jeong-Ah;Seo, Laiwon
    • Journal of Digital Contents Society
    • /
    • v.15 no.1
    • /
    • pp.113-120
    • /
    • 2014
  • In recent years, devices using the smart ponwa IT service is activated, to research how the fusion of two or more devices will be able to be interest in the soybeans. One of them in the mobile sector through the development of network and hardware digital geo-spatial map of the rapid advances being made and the computer, how do you map data to efficiently simulate a 3D environment, providing services through a virtual environment focused on whether be. In this study, augmented reality and GIS (Geographic Information System), SLM (Static LOD Model) that combines augmented reality technology on the basis of the basic concepts and approaches in geographic space and how Augmented Reality Based on this interpretation of the relevant content What to do in the development and utilization has a purpose. In this study, the conventional SLM 3DS model data structure of a data format conversion of the proposed possibilities for analyzing and, SLM model generation and format of the existing three-dimensional visualization tools SLM model format for converting a format to a model function, and visualization features. In addition, 3D virtual model to propose a format for efficiently making.

Flow Visualization Study on the Turbulent Mixing of Two Fluid Streams (III) (분지관 혼합기의 난류혼합에 대한 유동가시화 연구(III))

  • Kim, Kyung Chun;Shin, Dae Sig;Park, Kee Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.11
    • /
    • pp.1571-1581
    • /
    • 1998
  • A flow visualization study was carried out for the branch pipe mixing flow in which a jet was issued normally to the fully developed pipe flow. An instantaneous laser tomographic method was used for cross flow Reynolds numbers based on the cross flow diameter D ranged $Re_{cf}=5.26{\times}10^3{\sim}1.13{\times}10^4$, diameter ratios d/D = 0.1 ~ 0.2 and velocity ratios R = 0.5 ~ 10. Oil mist with the size of about $10{\mu}m$ diameter was used for the scattering particle. The main purpose of this study was to reveal the physical mechanism and the structure of vortices formation with varying the velocity ratios and diameter ratios in the branch pipe flow. It was found that the physical mechanism and the structures of vortices formation were quite different depending on the velocity ratios. Particularly in the case of R < 1, the typical vortex shows single loop shape and that for the case of R > 1 depicts mushroom-like structure in the cross flow jet.