• Title/Summary/Keyword: 3-D velocity vector

Search Result 51, Processing Time 0.028 seconds

Hybrid System Modeling and Control for Path Planning and Autonomous Navigation of Wheeled Mobile Robots (차륜형 이동로봇의 경로 계획과 자율 주행을 위한 하이브리드 시스템 모델과 제어)

  • Im, Mi-Seop;Im, Jun-Hong
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.1
    • /
    • pp.33-40
    • /
    • 2000
  • In this paper, an integrated method for the path planning and motion control of wheeled mobile robots using a hybrid system model and control is presented. The hybrid model including the continuous dynamics and discrete dynamics with the continuous and discrete state vector is derived for a two wheel driven mobile robot. The architecture of the hybrid control system for real time path planning and following is designed which has the 3-layered hierarchical structure : the discrete event system using the digital automata as the higher process, the continuous state system for the wheel velocity controls as the lower process, and the interface system as the interaction process between the continuous system as the low level and the discrete event system as the high level. The reference motion commands for autonomous navigation are generated by the abstracted motion in the discrete event system. The motion control tasks including the feasible path planning and autonomous motion control with various initial conditions are investigated as the applications by the simulation studies.

  • PDF

Performance and Sensitivity Analysis of Disk-type Fluidic Control System (디스크형 유체역학적 방향제어 시스템 성능해석 및 설계 인자 민감도 분석)

  • Cho, Mingyoung;Han, Doohee;Sung, Hong-Gye;Choi, Hyun Yung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.3
    • /
    • pp.103-110
    • /
    • 2016
  • A performance analysis program of a disk type fluidic valve was developed to predict a chamber pressure and a response time. A parametric study of this device was performed by using scattering plot method. A sensitivity of Mach number at a nozzle outlet showed the highest value about a outlet diameter of nozzle. An inlet flow rate is the most important parameter to design the fluidic valve because it has high sensitivity value both a outlet velocity and a response time.

Single-Camera Micro-Stereo 4D-PTV (단일카메라 마이크로 스테레오 4D-PTV)

  • Doh, Deog-Hee;Cho, Young-Beom;Lee, Jae-Min;Kim, Dong-Hyuk;Jo, Hyo-Jae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.12
    • /
    • pp.1087-1092
    • /
    • 2010
  • A micro 3D-PTV system has been constructed using a single camera system. Two viewing holes were created behind the object lens of the microscopic system to construct a stereoscopic viewing image. A hybrid recursive PTV algorithm was used. A concept of epipolar line was adopted to eliminate many spurious candidates. Three-dimensional velocity vector fields were obtained by calculating the three-dimensional displacements of particles that were identified as being identical. The system consists of a laser light source (Ar-ion, 500 mW), one high-definition camera ($1028{\times}1024$ pixels, 500 fps), a circular plate with two viewing holes, and a host computer. The performance of the developed algorithm was tested using artificial images. The characteristic of the vector recovery ratio was investigated for the particle numbers. A micro backward-facing step channel ($H{\times}h{\times}W:\;36{\mu}m{\times}70{\mu}m{\times}3000{\mu}m$) was measured using the developed measurement system. The results were in good qualitative agreement with other results.

Numerical Analysis Techniques and Flow Characteristics of Two-Stage Centrifugal Compressor for R134a Turbo-Chiller (R134a 터보 냉동기용 2단 원심 압축기의 수치해석 기법과 내부유동 특성)

  • Park, Han-Young;Oh, Hyun-Taek;Shin, You-Hwan;Lee, Yoon-Pyo;Kim, Kwang-Ho;Chung, Jin-Taek
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.4
    • /
    • pp.29-38
    • /
    • 2007
  • In this study, flow structure in a two-stage centrifugal compressor for a turbo-chiller with the refrigerant, R134a, was numerically investigated at the design point of the compressor using a commercial code. Flow characteristics in the passages of impeller, diffuser and return channel were analyzed in detail including velocity vector, secondary flow, Mach number and pressure contours in blade spanwise and meridional plane for each stage. The estimation on the one-dimensional output from the preliminary design and three-dimensional shape of the impeller blade and the meridional shape of the return channel were performed through the flow analysis, while some numerical schemes and techniques including Multiple Frames of Reference technique, real gas property data and inlet boundary condition changes, which were used in CFD, were compared with their features. The results will be used as reference data for a new design of 3-D impeller shape to improve R134a compressor performance.

AERODYNAMIC DESIGN AND NUMERICAL ANALYSIS OF PROPANE REFRIGERANT CENTRIFUGAL COMPRESSOR FOR LNG PLANT (LNG 플랜트용 프로판 냉매 압축기 공력설계 및 수치해석)

  • Park, J.H.;Lee, W.S.;Kang, K.J.;Shin, Y.H.;Lee, Y.P.;Kim, K.H.;Chung, J.T.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.167-173
    • /
    • 2010
  • In this study, flow structure in a three-stage centrifugal compressor for LNG Plant with the refrigerant, Propane, was numerically investigated at the design point of the compressor using a commercial code. Flow characteristics in the passages of impeller and vaneless diffuser were analyzed in detail including velocity vector, Mach number and pressure contours in blade spanwise and meridional plane for each stage. The estimation on the one-dimensional output from the preliminary design and three-dimensional shape of the impeller blade was performed through the flow analysis. The verification for designed compressor was carried out from three-dimensional Navier-Stokes analysis. The results will be used as reference data for a new design of 3-D impeller shape to improve propane refrigerant compressor performance.

  • PDF

Flow Analysis in the Fuel Chamber of Engine by Applying Turbulent Models (난류모형을 적용한 엔진 연료실의 유동해석)

  • Kwag Seung-Hyun
    • Journal of Navigation and Port Research
    • /
    • v.30 no.5 s.111
    • /
    • pp.369-374
    • /
    • 2006
  • The flow analysis was made by applying the turbulent models in the complicated fuel chamber of engine. The $k-\varepsilon,\;k-\omega$, Spalart-Allmaras and reynolds stress models are used in which the hybrid grid is applied for the simulation. The velocity vector, the pressure contour, the change of residual along the iteration number, and the dynamic head are simulated for the comparison of four example cases. Computational results are compared with others. For the code's validation, 2-D bodies were simulated in advance by predicting the drag coefficients.

Effect of a Variation of a Main Duct Area on Flow Distribution of Each Branch (주덕트의 단면적 변화가 분지덕트의 유량분배에 미치는 영향)

  • Lee Jai-Ho;Kim Beom-Jun;Cho Dae-Jin;Yoon Suck-Ju
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.4
    • /
    • pp.386-395
    • /
    • 2005
  • With the development of a living standard, the importance of indoor air conditioning system in all kinds of buildings and vehicles has increased. A lot of researches on energy losses in a duct and various kinds of flow pattern in branches or junctions have been carried out over many years, because the primary object of a duct system used in HVAC is to provide equal flow rate in the interior of each room by minimizing pressure drop. In this study, to get equal flow distribution in each branch, a blockage is applied to the rectangular duct system. The flow analysis for flow distribution of a rectangular duct with two branches was performed by CFD. By using SIMPLE algorithm and finite volume method, flow analysis is performed in the case of 3-D, incompressible, turbulent flow. Also, the standard $k-{\varepsilon}$ model and wall function method were used for analysis of turbulent fluid flow. The distribution diagrams of static pressure, velocity vector, turbulent energy and kinetic energy in accordance with variation of Reynolds number and blockages location in a rectangular duct show that flow distribution at duct outlets is improved by a blockage. In this rectangular duct system, mean velocity and flow rate distribution in two branch outlets are nearly constant regardless of variation of Reynolds number, and a flow pattern of the internal duct has a same tendency as well.

Verification of Navigation System of Guided Munition by Flight Experiment (비행 실험을 통한 유도형 탄약 항법 시스템 검증)

  • Kim, Youngjoo;Lim, Seunghan;Bang, Hyochoong;Kim, Jaeho;Pak, Changho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.11
    • /
    • pp.965-972
    • /
    • 2016
  • This paper presents results of flight experiments on a navigation algorithm including multiplicative extended Kalman filter for estimating attitude of the guided munition. The filter describes orientation of aircraft by data fusion with low-cost sensors where measurement update is done by multiplication, rather than addition, which is suitable for quaternion representation. In determining attitude from vector observations, the existing approach utilizes a 3-axis accelerometer as a 2-axis inclinometer by measuring gravity to estimate pitch and roll angles, while GNSS velocity is used to derive heading of the vehicle. However, during accelerated maneuvers such as coordinated flight, the accelerometer provides inadequate inclinometer measurements. In this paper, the measurement update process is newly defined to complement the vulnerability by using different vector observations. The acceleration measurement is considered as a result of a centrifugal force and gravity during turning maneuvers and used to estimate roll angle. The effectiveness of the proposed method is verified through flight experiments.

Integrated Algorithm for Identification of Long Range Artillery Type and Impact Point Prediction With IMM Filter (IMM 필터를 이용한 장사정포의 탄종 분리 및 탄착점 예측 통합 알고리즘)

  • Jung, Cheol-Goo;Lee, Chang-Hun;Tahk, Min-Jea;Yoo, Dong-Gil;Sohn, Sung-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.8
    • /
    • pp.531-540
    • /
    • 2022
  • In this paper, we present an algorithm that identifies artillery type and rapidly predicts the impact point based on the IMM filter. The ballistic trajectory equation is used as a system model, and three models with different ballistic coefficient values are used. Acceleration was divided into three components of gravity, air resistance, and lift. And lift acceleration was added as a new state variable. The kinematic condition that the velocity vector and lift acceleration are perpendicular was used as a pseudo-measurement value. The impact point was predicted based on the state variable estimated through the IMM filter and the ballistic coefficient of the model with the highest mode probability. Instead of the commonly used Runge-Kutta numerical integration for impact point prediction, a semi-analytic method was used to predict impact point with a small amount of calculation. Finally, a state variable initialization method using the least-square method was proposed. An integrated algorithm including artillery type identification, impact point prediction and initialization was presented, and the validity of the proposed method was verified through simulation.

Improvement of Rotary Tine for Barley Seeder Attached to Rotary Tiller (로우터리 맥류파종기 경운날의 개량시험)

  • 김성래;김문규;김기대;허윤근
    • Journal of Biosystems Engineering
    • /
    • v.4 no.1
    • /
    • pp.1-23
    • /
    • 1979
  • The use of barley seeder attached to rotary tiller in the rural area has a significant meaning not only for the solution of labor peak season, but also for the increase of land utilization efficiency. The facts that presently being used barley seeders are all based on the mechanical principles of the reverse rotation, center drive and are all using forward rotating tine, which is used to be easily and heavily worn out when it rotates reversely, raise problem of recommending them to rural area in Korea. Therefore, the main objective of the study was to develop new type of rotary tine attachable to barley seeders. To attain the objective the following approaches were applied. (1) The kinematic analysis of reverse rotating barley seeders. (2) The studies on the soil bin and artificial soil. (3) The comparative experiment on the power requirement of prototype tine. The results obtained from the studies are summarized as follow: 1. The kinematic analysis of barley seeder attached to rotary tiller: The following results were obtained from the kinematic analysis for deriving general formulae of the motion and velocity characterizing the rotary tine of barley seeders presently being used by farmers. a) The position vector (P) of edge point (P) in the rotary tine of reverse rotating, center drive was obtained by the following formula. $$P=(vt+Rcos wt)i+Rsin wt j+ \{ Rcos \theta r sin \alpha cos (wt- \beta +\theta r) +Rsin \theta r sin \alpha sin (wt-\beta + \theta r) \} lk $$ b) The velocity of edge point $(P^')$ of reverse rotating, center drive rotary tine was obtained by the following formula. $$(P^')=(V-wR sin wt)i+(w\cdot Rcoswt)j + \{ -w\cdot Rcos \theta r\cdot sin \alpha \cdot sin (wt-\beta +\theta r) + w\cdot Rsin \theta r\cdot sin \alpha \cdot cos (wt- \beta + \theta r \} k $$ c) In order to reduce the power requirement of rotary tine, the angle between holder and edge point was desired to be reduced. d) In order to reduce the power requirement, the edge point of rotary tine should be moved from the angle at the begining of cutting to center line of machine, and the additional cutting width should be also reduced. 2. The studies on the soil bin and artificial soil: In order to measure the power requirement of various cutting tines under the same physical condition of soil, the indoor experiments Viere conducted by filling soil bin with artificially made soil similar to the common paddy soil and the results were as follows: a) When the rolling frequencies$(x)$ of the artificial soil were increased, the densIty$(Y)$ was also increased as follows: $$y=1.073200 +0.070780x - 0.002263x^2 (g/cm^3)$$ b) The absolute hardness $(Y)$ of soil had following relationship with the rolling frequencies$(x)$ and were increased as the rolling frequencies were increased. $$Y=37.74 - \frac {0.64 + 0.17x-0. 0054x^2} {(3.36-0.17x + 0.0054x^2)^3} (kg/cm^3)$$ c) The density of soil had significant effect on the cohesion and angle of internal friction of soil. For instance, the soil with density of 1.6 to 1.75 had equivalent density of sandy loam soil with 29.5% of natural soil moisture content. d) The coefficient of kinetiic friction of iron plate on artificial soil was 0.31 to 0.41 and was comparable with that of the natural soil. e) When the pulling speed of soil bin was the 2nd forward speed of power tiller, the rpm of driving shaft of rotary was similar to that of power tiller, soil bin apparatus is indicating the good indoor tester. 3. The comparative experiment on the power requirement of prototype tine of reverse rotating rotary: According to the preliminary test of rotary tine developed with various degrees of angle between holder and edge pcint due to the kinematic analysis, comparative test between prototype rotary tine with $30 ^\circ $ and $10 ^\circ$ of it and presently being used rotary tine was carried out 2nd the results were as follows: a) The total cutting torque was low when the angle between holder and edge point was reduced. b) $\theta r$ (angle between holder and edge point) of rotary tine seemed to be one: of the factors maximizing the increase of torque. c) As the angle between holder and edge point ($\theta r$) of rotary tine was $30 ^\circ $ rather than $45 ^\circ $, the angle of rotation during cutting soil was reduced and the total cutting torque was accordingly reduced about 10%, and the reduction efficiency of total cutting torque was low when the angle between holder and edge point ($\theta r$) of rotary tine was $10 ^\circ $, which indicates that the proper angle between holder and edge point of rotary tine should be larger than $10 ^\circ $ and smaller than $30 ^\circ $ . From above results, it could be concluded that the use of the prototype rotary tine which reduced the angle between holder and edge point to $30 ^\circ $, insted of $45 ^\circ $, is disirable not only decreasing the power requirements, but also increasing the durabie hour of it. Also forward researches are needed, WIlich determine the optimum tilted angle of rotary brocket, and rearrangement of the rotary tine on the rotary boss.

  • PDF