This paper presents 3D collision deformation modelling methodologies using photogrammetry for reconstruction of vehicle accidents. A vehicle's deformation shape in collision provides important information on how the vehicle collided. So effective measurement(scanning) and construction of a corresponding appropriate model are essential in the analysis of collision deformation shape for obtaining much information related to collision accident. Two measurement methods were used in this study: Indirect-photogrammetry which requires relatively small amount of photos or videos, and direct-photogrammetry which requires large amount of photos directly taken for the purpose of 3D modelling. When the indirect-photogrammetry method, which was mainly used in this study, lacked enough photographic information, already secured 2D numerical deformation data was used as a compensation. This made 3D collision deformation modelling for accident reconstruction analysis possible.
본 연구에서는 레이저 슬릿 빔을 이용한 능동 스테레오 정합 기법과 모자이크 기법을 결합한 3차원 형상 복원 기법을 제안한다. 능동 스테레오 정합 기법은 레이저 슬릿 빔이 조사된 좌, 우 영상에서 색상과 밝기 변화를 분석하여 레이저 라인의 위치정보를 검출하고, 등극선(epipolar line)에서 이를 비교하여 깊이 정보를 획득하는 방법이다. 모자이크 기법은 해리스 코너 검출 방법(harris corner detection)을 이용하여 영상의 특징점을 검출하고, 특징점 기술자(keypoint descriptor) 색인 분류 방법으로 연속 영상 간 특징점의 대응쌍을 찾고 상호 변환 관계를 추정하는 방법이다. 능동 스테레오 정합기법과 모자이크 기법을 이용하여 전체 연속 영상의 깊이 정보를 계산하였다. 이와 같은 방법으로 획득한 연속 영상의 깊이 정보를 영상의 색상, 질감 정보와 융합(blending)과정을 거쳐 최종 3차원 형상 정보로 복원하였다. 제안한 복원기법은 레이저 슬릿 빔과 스테레오 카메라를 사용함으로써 장소와 거리 제약 조건을 극복하여 용이하면서도 강인한 3차원 거리 정보를 획득할 수 있었다.
본 논문에서는 딥러닝과 구체의 형태 변형 방법을 이용한 단일 이미지에서의 3D mesh 재구축 기법을 제안한다. 제안한 기법은 기존의 방식과 다른 다음과 같은 독창성이 있다. 첫 번째, 기존의 근처의 가까운 점들을 연결하여 모서리 또는 면을 구축하는 방식과 다르게 딥러닝 네트워크을 통하여 구체의 꼭짓점의 위치를 사물의 3D 포인트 클라우드와 매우 유사하게 수정한다. 3D 포인트 클라우드를 이용하므로 메모리가 적게 필요하며 구체의 꼭짓점에 오프셋 값 사이에 덧셈 연산만을 수행하기 때문에 더 빠른 연산이 가능하다. 두 번째, 수정한 꼭짓점에 구체의 면 정보를 씌워 3D mesh를 재구축한다. 구체의 꼭짓점의 위치를 수정하여 생성한 3D 포인트 클라우드의 점들의 간격이 일정하지 않을 때에도 이미 점들 사이의 연결 여부를 나타내는 구체의 면 정보라는 3D mesh의 면 정보를 가지고 있어 표현의 단순화나 결손을 방지할 수 있다. 제안하는 기법의 객관적인 신뢰성을 평가하기 위해 공개된 표준 데이터셋인 ShapeNet 데이터셋을 이용하여 비교 논문들과 같은 방법으로 실험한 결과, 본 논문에서 제안하는 기법의 IoU 값이 0.581로, chamfer distance 값은 0.212로 산출되었다. IoU 값은 수치가 높을수록, chamfer distance 값은 수치가 낮을수록 우수한 결과를 나타내므로 다른 논문에서 발표한 기법들보다 3D mesh 재구축의 결과에서 성능의 효율성이 입증되었다.
Segmentation and organization of the LiDAR (Light Detection and Ranging) data of the Earth's surface are difficult tasks because the captured LiDAR data are composed of irregularly distributed point clouds with lack of semantic information. The reason for this difficulty in processing LiDAR data is that the data provide huge amount of the spatial coordinates without topological and/or relational information among the points. This study introduces LiDAR data segmentation technique by utilizing histograms of the LiDAR height image data and analyzing roof shape for 3D reconstruction and visualization of the buildings. One of the advantages in utilizing LiDAR height image data is no registration required because the LiDAR data are geo-referenced and ortho-projected data. In consequence, measurements on the image provide absolute reference coordinates. The LiDAR image allows measurement of the initial building boundaries to estimate locations of the side walls and to form the planar surfaces which represent approximate building footprints. LiDAR points close to each side wall were grouped together then the least-square planar surface fitting with the segmented point clouds was performed to determine precise location of each wall of an building. Finally, roof shape analysis was performed by accumulated slopes along the profiles of the roof top. However, simulated LiDAR data were used for analyzing roof shape because buildings with various shapes of the roof do not exist in the test area. The proposed approach has been tested on the heavily built-up urban residential area. 3D digital vector map produced by digitizing complied aerial photographs was used to evaluate accuracy of the results. Experimental results show efficiency of the proposed methodology for 3D building reconstruction and large scale digital mapping especially for the urban area.
본 논문은 수중에서 사용되는 영상 소나를 이용하여 수중 물체의 외형 복원을 수행하여 보고 그 결과를 분석한다. 일반적으로 해양 측량에 많이 사용되는 다중빔 해양 측심기(Multi-beam echo sounder, MES)보다 더 자세한 수중 환경 관찰이 가능한 영상 소나는 상하 방사영역 정보의 불확실성으로 인해 3차원 복원 연구로 활용되기에 어려움이 있다. 이에 본 논문에서는 소나 영상에서 얻는 물체에 대한 3차원 높이 정보의 불확실성을 줄이기 위해 영상 소나의 상하 방사영역을 좁게 조정하여 영상 소나의 3차원 물체 외형 복원의 어려움을 극복하고자 한다. 또한, 음향 채널별 잡음 제거 필터를 적용하고, 음향 채널별 상호보완 거리값 검출 방법의 적용을 통해 3차원 위치 정보의 정확도를 높이고자 한다. 제안한 수중 물체 외형 복원 방법은 3가지 물체(원뿔, 구, 기둥)에 대해 3차원 복원 실험을 수행하여 보고 그 결과를 분석하였다.
3차원 형상과 모션을 추정하기 위한 통계학적 최적화 알고리즘들이 다양하게 개발되고 있다. 그렇지만 통계적 접근은 카메라의 기하학적 위치나 관측시야각 등의 설정에 따른 SfM(Shape form Motion)의 민감한 영향을 분석하는데는 한계가 있다. 본 논문은 SfM의 모호성을 예측하기 위해 카메라 촬영 구성 요소를 이용하여 관측행렬의 불확실성을 정량적으로 추정할 수 있는 방법을 제안한다. 제안한 방법은 SfM 알고리즘의 최종적인 복원 성능을 예측하는데도 매우 효과적인 방법이다. 또한 합리적인 복원 결과를 기대할 수 있도록 카메라 촬영 구성을 설정하기 위한 직접적인 가이드라인을 제공할 수 있다는 점에서 중요하다. 실험결과는 이러한 카메라 촬영 구성을 이용하여 관측행렬의 불확실성에 대한 정량적 추정을 실험적으로 검증하고 본 알고리즘의 효율성을 확인한다.
X-선 탐지장치는 검색 대상물에 대한 단면 정보만을 제공하기 때문에 내용물에 대한 판정의 한계가 있다. 스테레오 X-선 탐지 장치는 검색 대상체에 대한 단면 정보와 논문에서 제안된 볼륨기반의 3차원 형상복원 알고리즘을 통해 3차원 정보를 제공하여 검색효율을 높일 수 있다. 또한, 고속 검색을 위해 자동화 검색에 대한 식별자로 형상복원 결과를 적용하고자 유사한 모형의 15개 샘플에 대한 형상 복원 및 검출율을 분석하였다. 검색대상 모델에 대한 복원 결과는 실측 모델과 비교할 때 각각 폭 (2.56%), 높이 (6.15 %)와 깊이 (7.12 %)의 오차를 보이며 높은 정확도를 나타내었다. 또한 K-Mean 클러스터링 알고리즘을 적용하여 실험한 결과 97 %의 검출 효율이 보였다. 본 논문의 결과는 자동화 시스템을 위한 새로운 검색식별자를 제시하며 추가연구를 통해 검색 시스템의 효율성 향상을 위한 연구를 진행할 것이다.
This paper proposes a reconstruction method for the shape and color information of 3-dimensional buildings. The proposed method is range scanning by laser range finder and image coordinates' color information mapping to laser coordinate by a fixed CCD camera on laser range finder. And we make a 'Far-View' using high-resolution satellite image. The 'Far-View' is created that the height of building using DEM after contours of building extraction. The user select a region of 'Far View' and then, appear detailed 3D-reconstruction of building The outcomes apply to city plan, 3D-environment game and movie background etc.
A vision sensor should be calibrated prior to infer a Euclidian shape reconstruction. A point to point calibration. also referred to as a hard calibration, estimates calibration parameters by means of a set of 3D to 2D point pairs. We proposed a new method for determining a set of 3D to 2D pairs for the structured light hard calibration. It is simply determined based on epipolar geometry between camera image plane and projector plane, and a projector calibrating grid pattern. The projector calibration is divided two stages; world 3D data acquisition Stage and corresponding 2D data acquisition stage. After 3D data points are derived using cross ratio, corresponding 2D point in the projector plane can be determined by the fundamental matrix and horizontal grid ID of a projector calibrating pattern. Euclidian reconstruction can be achieved by linear triangulation. and experimental results from simulation are presented.
Shape reconstruction is considered as a new technology to be useful and important in many areas such as RPD (Rapid Product Development) and reverse engineering, compared with the conventional design and manufacturing. In shape reconstruction, it becomes possible to reconstruct objects not by their measured shape data but those data extracted from the original shape. The goal of this research is to realize 3D shape construction by showing a possible way to analyze the input image data and reconstruct that original shape. The main 2 steps of the reconstructing process are getting cross-section data from image processing and linking loops between one slice and the next one. And the reconstructed object in this way is compared with the other object using a laser scanner and modelled by an commercial software.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.