• Title/Summary/Keyword: 3-D shape reconstruction

Search Result 170, Processing Time 0.026 seconds

Reconstruction Of Photo-Realistic 3D Assets For Actual Objects Combining Photogrammetry And Computer Graphics (사진측량과 컴퓨터 그래픽의 결합을 통한 실제 물체의 사실적인 3D 에셋 재건)

  • Yan, Yong
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.1
    • /
    • pp.147-161
    • /
    • 2021
  • Through photogrammetry techniques, what current researches can achieve at present is rough 3D mesh and color map of objects, rather than usable photo-realistic 3D assets. This research aims to propose a new method to create photo-realistic 3D assets that can be used in the field of visualization applications. The new method combines photogrammetry with computer graphics modeling. Through the description of the production process of three objects in the real world - "Bullet Box", "Gun" and "Metal Beverage Bottle," it introduces in details the concept, functions, operating skills and software packages used in the steps including the photograph object, white balance, reconstruction, cleanup reconstruction, retopology, UV unwrapping, projection, texture baking, De-Lighting and Create Material Maps. In order to increase the flexibility of the method, alternatives to the software packages are also recommended for each step. In this research, 3D assets are produced that are accurate in shape, correct in color, easy to render and can be physically interacted with dynamic lighting in texture. The new method can obtain more realistic visual effects at a faster speed. It does not require large-scale teams, expensive equipment and software packages, therefore it is suitable for small studios and independent artists and educational institutions.

The Study of automated inspection technology using a three-dimensional reconstruction of stereo X-ray image based dual-sensor Environment (Dual-Sensor 기반 스테레오 X-선 영상의 3차원 형상복원기술을 이용한 검색 자동화를 위한 연구)

  • Hwang, Young-Gwan;Lee, Nam-Ho;Kim, Jong-Ryul
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.695-698
    • /
    • 2014
  • As most the scanning systems developed until now provide radiation scan plane images of the inspected objects, there has been a limitation in judging exactly the shape of the objects inside a logistics container exactly with only 2-D radiation image information. Two 2-dimensional radiation images which have different disparity values are acquired from a newly designed stereo image acquisition system which has one additional line sensor to the conventional system. Using a matching algorithm the 3D reconstruction process which find the correspondence between the images is progressed. In this paper, we proposed a new volume based 3D reconstruction algorithm and experimental results show the proposed new volume based reconstruction technique can provide more efficient visualization for cargo inspection. The proposed technique can be used for the development of the high speed and more efficient non-destructive auto inspection system.

  • PDF

The 3D Shape Reconstruction System Based on Active Stereo Matching (Active Stereo Matching 기반의 3차원 형상 재구성 시스템)

  • Byun, Ki-Won;Im, Jae-Uk;Kim, Dae-Dong;Nam, Ki-Gon
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.1003-1004
    • /
    • 2008
  • In this paper, we propose a 3D modeling method using Laser Slit Beam and Stereo Camera. We can get depth information of image by analyzing projected Laser Slit Beam on object. 3D modeling is demanded exquisite merge of 3D data. In our approach, we can get the depth image where the reliability is high. Each reconstructed 3D modeling is combined by the sink information which is acquired by SIFT (Scale Invariant Feature Transform) Algorithm. We perform experiments using indoor images. The results show that the proposed method works well in indoor environments

  • PDF

Moving Human Shape and Pose Reconstruction from Video (비디오로부터의 움직이는 3D 인체 형상 및 자세 복원)

  • Han, Ji Soo;Cho, Myung Rai;Park, In Kyu
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2018.11a
    • /
    • pp.66-68
    • /
    • 2018
  • 본 논문에서는 비디오로부터 추출된 프레임에서 3D 인체 모델의 복원하고 이를 부드럽게 재생될 수 있도록 보정하는 기법을 제안한다. 매개변수 기반의 모델을 사용하여 자세 및 체형을 복원하도록 접근하고 있다. 매개변수 기반의 인체 모델은 다양한 인체 데이터의 학습을 통해 만들어지며 입력 영상으로부터 최적의 자세와 체형 매개변수 값을 찾아 복원하게 된다. 자세 복원은 CNN 을 사용하여 영상으로부터 인체의 관절 위치를 추정하고 3D 모델로부터 2D 로 투영을 통해 관절 간의 거리가 최소화되는 매개변수 값을 찾아 복원한다. 형상 복원은 2D 영상으로부터 취득된 사람의 윤곽 데이터와 3D 모델의 윤곽 데이터 간의 매칭을 통해 복원된다. 이러한 단일 입력 영상에서 비디오와 같은 다중 입력 영상으로 확장하여 칼만 필터를 적용하여 오류 프레임을 검출하고 이전, 이후 프레임의 매개변수와의 보간을 통해 보다 자연스럽고 정확한 모델을 생성한다.

  • PDF

Improved shape-based interpolation for three-dimensional reconstruction in gray-scale images (3차원 그레이-스케일 영상 재구성을 위한 개선된 형태-기반 보간)

  • Kim Hong, Helen;Park, Joo-Young;Kim, Myoung-Hee
    • Journal of the Korea Computer Graphics Society
    • /
    • v.2 no.1
    • /
    • pp.77-85
    • /
    • 1996
  • Using a series of medical tomograms, we can reconstruct internal organs or other objects of interest and generate 3-D images. It is generally accepted that the axial resolution determined by two sequential image slices is lower than the planar resolution in one image slices. Therefore, various methods of interpolation were developed for an accurate display of reconstructed images. In this paper, a new algorithm for 3-D reconstruction of the medical images such as MRI and X-ray CT is suggested. The algorithm is shape-based and utilizes parts of the gray-level information. We extend the conventional shape-based interpolation of the binary images to the gray-scale images using the shortest distance map. Using this new algorithm, We could reduce the execution time for interpolation while keeping similar high quality of the reconstructed images with reduced execution time and is applicable to the various medical tomograms.

  • PDF

Micro-computed tomography for assessing the internal and external voids of bulk-fill composite restorations: A technical report

  • Tosco, Vincenzo;Monterubbianesi, Riccardo;Furlani, Michele;Giuliani, Alessandra;Putignano, Angelo;Orsini, Giovanna
    • Imaging Science in Dentistry
    • /
    • v.52 no.3
    • /
    • pp.303-308
    • /
    • 2022
  • Purpose: This technical report aims to describe and detail the use of micro-computed tomography for a reliable evaluation of the bulk-fill composite/tooth interface. Materials and Methods: Bulk-fill composite restorations in tooth cavities were scanned using micro-computed tomography to obtain qualitatively and quantitatively valuable information. Two-dimensional information was processed using specific algorithms, and ultimately a 3-dimensional (3D) specimen reconstruction was generated. The 3D rendering allowed the visualization of voids inside bulk-fill composite materials and provided quantitative measurements. The 3D analysis software VG Studio MAX was used to perform image analysis and assess gap formation within the tooth-restoration interface. In particular, to evaluate internal adaptation, the Defect Analysis addon module of VG Studio Max was used. Results: The data, obtained with the processing software, highlighted the presence and the shape of gaps in different colours, representing the volume of porosity within a chromatic scale in which each colour quantitatively represents a well-defined volume. Conclusion: Micro-computed tomography makes it possible to obtain several quantitative parameters, providing fundamental information on defect shape and complexity. However, this technique has the limit of not discriminating materials without radiopacity and with low or no filler content, such as dental adhesives, and hence, they are difficult to visualise through software reconstruction.

Detection of Foreign Body in Esophageal Foreign Body Model Using Three Dimensional Reconstruction Technique (식도 이물 모델에서 이물 탐색을 위한 삼차원 재구성법의 활용)

  • Woo, Kuk Sung;Yoo, Young Sam;Kim, Dong Won
    • Korean Journal of Bronchoesophagology
    • /
    • v.18 no.1
    • /
    • pp.13-18
    • /
    • 2012
  • Objective This study was conducted to gather basic information of 3D CT in detecting and gaining information of esophageal foreign body (FB) models. Materials and Methods The chest model was made using PVC bottle, rubber balloon and plaster. Fish bone, Persimmon stone were used to mimic foreign bodies of esophageal model. The foreign body models were inserted into the balloon removing air from it and the balloon was sealed. The esophageal FB model was inserted into the chest model. The remaining space in the chest model was filled with fish paste and water to simulate soft tissue around esophagus. CT of chest model was reconstructed three-dimensionally by Rapidia software to make images of foreign body models. The axial CT, MPR image and VOI image were compared with real foreign body materials as to shape, size, location and orientation. Results Esophageal FB models were easily made. CT data gave good 3D images and showed realistic foreign body materials. Conclusion The results indicate the usefulness of 3D CT technique to help in diagnosis of esophageal foreign body models.

  • PDF

Phase Differences Averaging (PDA) Method for Reducing the Phase Error in Digital Holographic Microscopy (DHM)

  • Hyun-Woo, Kim;Jaehoon, Lee;Arun, Anand;Myungjin, Cho;Min-Chul, Lee
    • Journal of information and communication convergence engineering
    • /
    • v.21 no.1
    • /
    • pp.90-97
    • /
    • 2023
  • Digital holographic microscopy (DHM) is a three-dimensional (3D) imaging technique that uses the phase information of coherent light. In the reconstruction process of DHM, a narrow region around the positive or negative sideband from the Fourier domain is windowed to avoid noise due to the DC spectrum of the hologram spectrum. However, the limited size of the window also degrades the high-frequency information of the 3D object profile. Although a large window can have more detailed information of the 3D object shape, the noise is increased. To solve this trade-off, we propose phase difference averaging (PDA). The proposed method yields high-frequency information of the specimen while reducing the DC noise. In this paper, we explain the reconstruction algorithm for this method and compare it to various conventional filtering methods including Gaussian, Wiener, average, median, and bilateral filtering methods.

An Hardware Error Analysis of 3D Automatic Face Recognition Apparatus(3D-AFRA) : Surface Reconstruction (3차원 안면자동인식기(3D-AFRA)의 Hardware 정밀도 검사 : 형상복원 오차분석)

  • Seok, Jae-Hwa;Song, Jung-Hoon;Kim, Hyun-Jin;Yoo, Jung-Hee;Kwak, Chang-Kyu;Lee, Jun-Hee;Kho, Byung-Hee;Kim, Jong-Won;Lee, Eui-Ju
    • Journal of Sasang Constitutional Medicine
    • /
    • v.19 no.2
    • /
    • pp.30-39
    • /
    • 2007
  • 1. Objectives The Face is an important standard for the classification of Sasang Constitution. We are developing 3D Automatic Face Recognition Apparatus(3D-AFRA) to analyse the facial characteristics. This apparatus show us 3D image and data of man's face and measure facial figure data. So we should examine the figure restoration error of 3D Automatic Fare Recognition Apparatus(3D-AFRA) in hardware Error Analysis. 2. Methods We scanned Face status by using 3D Automatic Face Recognition Apparatus(3D-AFRA). And also we scanned Face status by using laser scanner(vivid 9i). We compared facial shape data be restored by 3D Automatic Face Recognition Apparatus(3D-AFRA) with facial shape data that be restorated by 3D laser scanner. And we analysed the average error and the maximum error of two data. 3. Results and Conclusions In frontal face, the average error was 0.48mm. and the maximum error was 4.60mm. In whole face, the average error of was 0.99mm. And the maximum error was 6.64mm. In conclusion, We assessed that accuracy of 3D Automatic Face Recognition Apparatus(3D-AFRA) is considerably good.

  • PDF

Measurement Accuracy for 3D Structure Shape Change using UAV Images Matching (UAV 영상정합을 통한 구조물 형상변화 측정 정확도 연구)

  • Kim, Min Chul;Yoon, Hyuk Jin;Chang, Hwi Jeong;Yoo, Jong Soo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.25 no.1
    • /
    • pp.47-54
    • /
    • 2017
  • Recently, there are many studies related aerial mapping project and 3 dimensional shape and model reconstruction using UAV(unmanned aerial vehicle) system and images. In this study, we create 3D reconstruction point data using image matching technology of the UAV overlap images, detect shape change of structure and perform accuracy assessment of area($m^2$) and volume($m^3$) value. First, we build the test structure model data and capturing its images of shape change Before and After. Second, for post-processing the Before dataset is convert the form of raster format image to ensure the compare with all 3D point clouds of the After dataset. The result shows high accuracy in the shape change of more than 30 centimeters, but less is still it becomes difficult to apply because of image matching technology has its own limits. But proposed methodology seems very useful to detect illegal any structures and the quantitative analysis of the structure's a certain amount of damage and management.