• Title/Summary/Keyword: 3-D scan

Search Result 870, Processing Time 0.024 seconds

Classification of Side Somatotype of Upper Lateral Torso Analyzing 3D Body Scan Image of American Females (미국 여성의 3차원 바디 스캔 이미지 분석을 통한 상반신 측면체형 분류)

  • Na, Hyun-Shin
    • Journal of the Korean Society of Costume
    • /
    • v.57 no.4 s.113
    • /
    • pp.9-17
    • /
    • 2007
  • Somatotype is human body shape and physique type which can be classified not only by the size, but also by the shape or posture of the body. Postural variations in the alignment of the back, shoulder, and neck can have an adverse effect on the fit of garments designed to hang from the shoulders. There have been some previous studies about the lateral upper torso by analyzing photographic measurements. In this study, 3D body scan images were used to classify the side somatotype of upper lateral method even though they are major data in the classification of upper torso. This study focused on following objective.; 1) To apply new and developing technology into the apparel industry analyzing 3D body scan images. 2) To classify upper laterla torso using the data through the new improver technology, 3D body scanner. 3) To propose basic materials for well fitted garments for each type of figure. The test subjects for this study were two hundreds nine female aged 19 years and up who were recruited in Cornell university body scan research team. Seventeen Variables(12 angles, 5 lengths) out of 3D body scan data were measured based on these landmarks and applied to analyze. The result of factor analysis indicated that 6 factors were extracted through factor analysis and orthogonal rotation by the method of Varimax and those factors comprise 62.5% of total variance. And the somatotype of upper body is classified into 3 types of figures according to cluster analysis; Bent forward posture, Straight posture, Swayback posture. Future study could be addressed about the somatotype of body by the age group based on the large database with wide variety of age.

Comparative Analysis of Body Measurement and Fit Evaluation between 2D Direct Body Measuring and 3D Body Scan Measuring (직접측정과 3차원 측정에 따른 인체치수 및 의복 착장 비교분석)

  • Istook, Cynthia L.;Lim, Ho-Sun;Chun, Jong-Suk
    • The Research Journal of the Costume Culture
    • /
    • v.19 no.6
    • /
    • pp.1347-1358
    • /
    • 2011
  • This study purposed to analyze differences in body measurement between the 2D direct body measuring method and the 3D body scan measuring method and to perform the appearance evaluation and cross-sectional evaluation of the fit of pants to which body measurements obtained by each measuring method were applied. Body measuring was conducted in 10 women in their 20s-30s using 2D direct body measuring and 3D automatic measuring with Hamamatsu body scanner. Among the 10 women, 3 participated in experimental garment wearing. Experimental pants were made using their 2D direct body measurements and 3D automatic measurements, and wearing tests were performed through expert evaluation and cross-sectional evaluation. The results of the experiment were as follows. According to the results of comparative analysis on differences between 2D direct body measurements and 3D scan measurements, 3D automatic measurements were significantly larger in bust circumference, ankle circumference, armscye circumference, shoulder length, scye depth, and arm length. As circumferences measured with the 3D body scanner were somewhat larger than directly measured ones, it is suggested to adjust ease when using existing pattern making methods. We prepared experimental garments by the same pattern making method through applying body measurements obtained with the two measuring methods, and assessed the fit of the garment comparatively through expert evaluation and 3D scan cross-sectional evaluation. According to the results, 2D-pants using 2D direct body measurements was slightly tighter than 3D-pants using 3D measurements in waist circumference, hip circumference, and abdominal circumference. In the results of comparing appearance in terms of the fit of the experimental garment in each subject, significant difference was observed in most of the compared items. This result suggests that 3D automatic body measuring data may show different accuracy according to body shape and therefore it is necessary to examine difference between 2D direct body measurements and 3D automatic measurements according to body shape.

Development of an Algorithm for Automatic Extraction of Lower Body Landmarks Using Grasshopper Programming Language (Grasshopper 프로그래밍 기반 3D 인체형상의 하반신 기준점 자동탐색 알고리즘 설계)

  • Eun Joo Ryu;Hwa Kyung Song
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.47 no.1
    • /
    • pp.171-190
    • /
    • 2023
  • This study aims to develop algorithms for automatic extraction landmarks from the lower body of women aged 20-54 using the Grasshopper programming language, based on 3D scan data in the 8th SizeKorea dataset. First, 11 landmarks were defined using the morphological features of 3D body surfaces and clothing applications, from which automatic landmark extraction algorithms were developed. To verify the accuracy of the algorithm, this study developed an additional algorithm that could automatically measure 16 items, and algorithm-derived measurements and SizeKorea measurements were compared using paired t-test analysis. The statistical differences between the scan-derived measurements and the SizeKorea measurements were compared, with an allowable tolerance of ISO 20685-1:2018. This study found that the algorithm successfully identified most items except for the crotch point and gluteal fold point. In the case of landmarks with significant differences, the algorithms were modified. This study was significant because scan editing, landmark search, and measurement extraction were successfully performed in one interface, and the developed algorithm has a high efficiency and strong adaptability.

A New Ultrasound Bladder Scanner to Estimate Urine Volume Using Hand-Motion Scan (손 동작 스캔을 이용한 잔뇨량 측정용 초음파 방광 스캐너)

  • Lee, Jung Hwan;Bae, Jung Ho;Lee, Soo Yeol;Cho, Min Hyoung
    • Journal of Biomedical Engineering Research
    • /
    • v.39 no.4
    • /
    • pp.153-160
    • /
    • 2018
  • 3D ultrasound bladder scanners are getting popular in hospitals for the patients with bladder dysfunction. A current bladder scanner adopts a mechanical scan to acquire 3D images and requires two motors and complicated mechanical devices. In this paper, we propose a new ultrasound bladder scanner using hand-motion scan. Instead of two motors and mechanical devices, it has a motion sensor to record transducer positions during hand-motion scan. The experiments with a bladder phantom and volunteers showed similar measurement accuracy to a conventional 3D ultrasound bladder scanner. We expect that the proposed method will reduce the cost and size of the bladder scanner.

Development of a Low-cost Lighting System for Line-acan Camera (라인 스캔 카메라를 위한 저가형 시 균일 조명장치 구현)

  • Kim, Hong-Gap;Kim, Hyeong-Seok
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.5
    • /
    • pp.235-240
    • /
    • 2000
  • A low cost lighting system for line-scan cameras has been developed with 3-phase power. When exposure time of line-scan camera is shorter than fluctuation period of illumination, the average gray value of each acquired 1-D image varies. Detecting defects on the objects's surface under such illuminating environment is very difficult. The proposed lighting system is composed of low-cost fluorescent lights based on 3-phase power. The specially designed lighting pack and the properly selected lighting position enable to get the rippleless lighting. The principle of the proposed lighting system has been explained analytically. The lighting system has been tested for fabric inspection with line-scan camera and it's efficacy has been proved.

  • PDF

The Verification of Accuracy of 3D Body Scan Data - Focused on the Cyberware WB4 Whole Body Scanner - (3차원 인체 스캔 데이터의 정확도 검증에 관한 연구 - Cyberware의 WB4 스캐너를 중심으로 -)

  • Park, Sun-Mi;Nam, Yun-Ja
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.14 no.1
    • /
    • pp.81-96
    • /
    • 2012
  • The purpose of this study is to provide fundamental information for standardization of 3D body measurement. This research analyzes errors occurring in the process of extracting body size from 3D body scan data. First, as a result of analyzing basic state of the 3D body scanner's calibration, the point number of each section was almost the same, while the right and left as well as the front and back coordinates of the center of gravity are not, showing unstable data. Nevertheless, the latter does not influence on the size of cylinder such as width and circumference. Next, we analyzed point coordinates variations of scan data on a mannequin nude by life casting. The result was great deflection in case of complicated or horizontal sections including the reference point beyond proper distance from centers of four cameras. In case of the mannequin's size, accuracy proves comparatively high in that measurement errors in height, width, depth, and length dimension occurred all within allowable errors, only except chest depth, while there were a lot of measurement errors in a circumference dimension. Secondly, analysis of accuracy of automatic extraction identification program algorithm presented that a semi-automatic measurement program is better than an automatic measurement program. While both of them ate very acute in parts related to crotch, they are not in armpit related parts. Therefore, in extracting of human body size from 3D scan data, what really matters seems to parts related to armpits.

  • PDF

Comparison of Avatar Posture Formation According to 3D Virtual Garment Modeling Programs -Focusing on Cycling Movements of High-School Male Cyclist-

  • Park, Hyunjeong;Do, Wolhee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.45 no.6
    • /
    • pp.965-977
    • /
    • 2021
  • The study aimed to analyze the functional differences in 3D virtual garment programs and compare body scan data with the corresponding 3D virtual models. We selected 3D virtual garment programs, formed virtual models in a representative size for high-school male cyclists, and analyzed them using the Design-X program. The results were as follows. In the 3D virtual garment programs, the anthropometric items for virtual model forming differed significantly from the standard anthropometric items suggested by Size Korea. Comparing the lower body scan data and virtual models formed by the 3D virtual garment programs, the biggest difference was in the shapes of the waist and hips, i.e., the flatness values of the waist and hips were different for each program in the cross-section view. In the lower body, a data-input-based program was needed for changing the exact measurement position of the waist circumference and hips' shape in detail. If a 3D virtual garment program provides functions for the virtual model's joint angle input and free motion transformation, it is expected to be widely used in the sportswear industry.

New IEEE 1149.1 Boundary Scan Architecture for Multi-drop Multi-board System (멀티 드롭 멀티 보드 시스템을 위한 새로운 IEEE 1149.1 경계 주사 구조)

  • Bae, Sang-Min;Song, Dong-Sup;Kang, Sung-Ho;Park, Young-Ho
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.11
    • /
    • pp.637-642
    • /
    • 2000
  • IEEE 1149.1 boundary scan architecture is used as a standard in board-level system testing. The simplicity of this architecture is an advantage in system testing, but at the same time, it it makes a limitation of applications. Because of several problems such as 3-state net conflicts, or ambiguity issues, interconnect testing for multi-drop multi-board systems is more difficult than that of single board systems. A new approach using IEEE 1149.1 boundary scan architecture for multi-drop multi-board systems is developed in this paper. Adding boundary scan cells on backplane bus lines, each board has a complete scan-chain for interconnect test. This new scan-path insertion method on backplane bus using limited 1149.1 test bus less area overhead and mord efficient than previous approaches.

  • PDF

Dimensional Characteristics of Hydraulic Actuator Curve based on 3D Printing Filament Materials (3D 프린팅 필라멘트 재료에 따른 유압액츄에이터 커브의 치수 특성)

  • Jung, Myung-Hwi;Kong, Jeong-Ri;Kim, Hae-Ji
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.1
    • /
    • pp.74-79
    • /
    • 2021
  • In this paper, the 3D shape of a hydraulic actuator cover was 3D printed by applying two materials, namely PLA and ABS. Subsequently, the printed shape was scanned to analyze the material properties, dimensional change characteristics, dimensions, and scan shape as a real model. To compare and analyze material-specific 3D printing dimensions, a non-contact mobile laser scanner was used to scan a portion of the printed hydraulic actuator cover and the final alignment shape of the 3D printed part was studied on the basis of the design model.

Accuracy of digital and conventional dental implant impressions for fixed partial dentures: A comparative clinical study

  • Gedrimiene, Agne;Adaskevicius, Rimas;Rutkunas, Vygandas
    • The Journal of Advanced Prosthodontics
    • /
    • v.11 no.5
    • /
    • pp.271-279
    • /
    • 2019
  • PURPOSE. The newest technologies for digital implant impression (DII) taking are developing rapidly and showing acceptable clinical results. However, scientific literature is lacking data from clinical studies about the accuracy of DII. The aim of this study was to compare digital and conventional dental implant impressions (CII) in a clinical environment. MATERIALS AND METHODS. Twenty-four fixed zirconia restorations supported by 2 implants were fabricated using conventional open-tray impression technique with splinted transfers (CII group) and scan with Trios 3 IOS (3Shape) (DII group). After multiple verification procedures, master models were scanned using laboratory scanner D800 (3Shape). 3D models from conventional and digital workflow were imported to reverse engineering software and superimposed with high resolution 3D CAD models of scan bodies. Distance between center points, angulation, rotation, vertical shift, and surface mismatch of the scan bodies were measured and compared between conventional and digital impressions. RESULTS. Statistically significant differences were found for: a) inter-implant distance, b) rotation, c) vertical shift, and d) surface mismatch differences, comparing DII and CII groups for mesial and distal implant scan bodies ($P{\leq}.05$). CONCLUSION. Recorded linear differences between digital and conventional impressions were of limited clinical significance with two implant-supported restorations.