• Title/Summary/Keyword: 3-D ray tracing method

Search Result 65, Processing Time 0.024 seconds

Acceleration Techniques for 3D Ray Tracing for Outdoor Propagation Model (실외 전파 특성 계산을 위한 고속 3차원 광선 추적법)

  • Lee, Haeng-Seon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.11
    • /
    • pp.1231-1236
    • /
    • 2007
  • In this paper, acceleration techniques for a three dimensional ray tracing method are presented. Ray tracing methods are widely adopted to obtain radio propagation channel models, however calculation times increase with the number of scatters such as buildings, hills and mountains. Various techniques are proposed in combination of ray tube concept.

Discrete Ray Tracing Techniques for Wave Propagation Characteristic of Random Rough Surfaces (불규칙 조면의 전파 특성 해석을 위한 이산 광선 추적법)

  • Yoon, Kwang-Yeol
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.3
    • /
    • pp.233-238
    • /
    • 2010
  • In this paper, we have proposed discrete ray tracing method (DRTM) for numerical analysis of characteristics of electromagnetic propagation along 2D random rough surfaces. The point of the present method is to discretize not only rough surface but also ray tracing. The former helps saving computer memories and the latter does simplifying ray searching algorithm resulting in saving computation time. Numerical calculations are carried out for 2D random rough surfaces, and electric field distributions are shown to check the effectiveness of the proposed DRTM.

BER Performance for Satellite DMB System E in Tunnel Environment (터널 환경에서 위성 DMB 시스템 E의 BER 성능)

  • Jo Han-shin;Kim Do-youn;Mun Cheol;Yook Jong-gwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.5A
    • /
    • pp.397-401
    • /
    • 2005
  • A different alternative method for simulating bit error rate(BER) performance of Satellite Digital Multimedia Broadcasting(DMB) in tunnel environments is presented. The method based on a channel model obtained by ray-tracing is able to support BER estimation over the channel presents arbitrary statistics that are difficult to fit to an analytic expression. The BER performance for System E over the tunnel fading channel that obtained by ray-tracing is predicted by the monte-carlo method. It can be observed that the BER performance for a straight tunnel channel is better than that for a line-of-sight(LOS) area in curved tunnel. Also, the BER performance for LOS areas in a curved tunnel outperforms that for non-line-of-sight(NLOS) areas in a curved tunnel. The BER performances for straight, curved LOS and curved NLOS tunnel channels are better than that for a Rayleigh channel(K=0) and less than that for a Rician channel with K=3. Moreover, for BER=10-3, it can be seen that there is approximately a $1{\sim}1.5\;dB$ difference between those three types of tunnel channels and a Rayleigh channel.

The Propagation Characteristics using Ray tracing in Urban area (전파추적기법을 이용한 마이크로셀 도심지 환경에서의 전파특성에 관한 연구)

  • 김희중;김관홍박병성박한규
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.177-180
    • /
    • 1998
  • In high frequency environment such as microcell, it is requried to adopt a new method different from the empirical channel modeling applied in macrocell. In this thesis, measurement for residential area in Sinrimdong and the result of the simulation are compared and analyzed. Simulation technique utilizes 3D ray launching method to consider some factors which were not included in the ray tracing method. Propagation environment in the urban area shows the typical channel characterisitics of the propagation environment. Using 3D ray launching method, pathloss of the wave and delay characteristics of the signal with respect to the height of the transmitter is researched. If the transmitter is located on the top of the building, radiowave experiences diffraction on the rooftop and it influences the total received signal strength.

  • PDF

Adaptive depth control algorithm for sound tracing (사운드 트레이싱을 위한 적응형 깊이 조절 알고리즘)

  • Kim, Eunjae;Yun, Juwon;Chung, Woonam;Kim, Youngsik;Park, Woo-Chan
    • Journal of the Korea Computer Graphics Society
    • /
    • v.24 no.5
    • /
    • pp.21-30
    • /
    • 2018
  • In this paper, we use Sound-tracing, a 3D sound technology based on ray-tracing that uses geometric method as auditory technology to enhance realism. The Sound-tracing is costly in the sound propagation stage. In order to reduce the sound propagation cost, we propose a method to calculate the average effective frame number of previous frames using the frame coherence property and to adjust the depth according to the space based on the calculated number. Experimental results show that the path loss rate is 0.72% and the traversal & Intersection test calculation amount is decreased by 85.13% and the frame rate is increased by 4.48% when the sound source is indoors, compared with the result of the case without depth control. When the sound source was outdoors, the path loss was 0% and the traversal & Intersection test calculation amount is decreased by 25.01% and the frame rate increased by 7.85%. This allowed the rendering performance to be increased while minimizing the path loss rate.

A Fast Shadow Testing Algorithm during Ray Tracing. (광선추적 수행중 그림자의 빠른 검사를 위한 효과적인 알고리즘)

  • Eo, Kil-Su;Choi, Hun-Kyu;Kyung, Chong-Min
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.537-540
    • /
    • 1988
  • This paper presents a new shadow testing acceleration scheme for ray tracing called hybrid shadow testing(HST), based on conditional switching between the conventional shadow testing method and Crow's shadow volume method, with the object polygons as well as the shadow polygons registered onto the corresponding cells under the 3-D space subdivision environment. Despite the preprocessing time for the generation and registration of the shadow polygons, the total shadow testing time of the new algorithm was approximately 50 % of that of the conventional shadow testing method for several examples while the total ray tracing time was typically reduced by 30% from the conventional approach.

  • PDF

A 3-D Propagation Model Considering Building Transmission Loss for Indoor Wireless Communications

  • Choi, Myung-Sun;Park, Han-Kyu;Heo, Youn-Hyoung;Oh, Sang-Hoon;Myung, Noh-Hoon
    • ETRI Journal
    • /
    • v.28 no.2
    • /
    • pp.247-249
    • /
    • 2006
  • In the development of a new wireless communications system, a versatile and accurate radio channel for indoor communications is needed. In particular, the investigation of radio transmission into buildings is very important. In this letter, we present an improved three-dimensional electromagnetic wave propagation prediction model for indoor wireless communications that takes into consideration building penetration loss. A ray tracing technique based on an image method is also employed in this study. Three-dimensional models can predict any complex indoor environment composed of arbitrarily shaped walls. A speed-up algorithm, which is a modified deterministic ray tube method, is also introduced for efficient prediction and computation.

  • PDF

Estimation of Solar Radiation Potential in the Urban Buildings Using CIE Sky Model and Ray-tracing

  • Yoon, Dong Hyeon;Song, Jung Heon;Koh, June Hwan
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.2
    • /
    • pp.141-151
    • /
    • 2020
  • Since it was first studied in 1980, solar energy analysis model for geographic information systems has been used to determine the approximate spatial distribution of terrain. However, the spatial pattern was not able to be grasped in 3D (three-dimensional) space with low accuracy due to the limitation of input data. Because of computational efficiency, using a constant value for the brightness of the sky caused the simulation results to be less reliable especially when the slope is high or buildings are crowded around. For the above reasons, this study proposed a model that predicts solar energy of vertical surfaces of buildings with four stages below. Firstly, CIE (Commission Internationale de l'Eclairage) luminance distribution model was used to calculate the brightness distribution of the sky using NREL (National Renewable Energy Laboratory) solar tracking algorithm. Secondly, we suggested a method of calculating the shadow effect using ray tracing. Thirdly, LOD (Level of Detail) 3 of 3D spatial data was used as input data for analysis. Lastly, the accuracy was evaluated based on the atmospheric radiation data collected through the ground observation equipment in Daejeon, South Korea. As a result of evaluating the accuracy, NMBE was 5.14%, RMSE 11.12, and CVRMSE 7.09%.

A fast gamma-ray dose rate assessment method for complex geometries based on stylized model reconstruction

  • Yang, Li-qun;Liu, Yong-kuo;Peng, Min-jun;Li, Meng-kun;Chao, Nan
    • Nuclear Engineering and Technology
    • /
    • v.51 no.5
    • /
    • pp.1436-1443
    • /
    • 2019
  • A fast gamma-ray dose rate assessment method for complex geometries based on stylized model reconstruction and point-kernel method is proposed in this paper. The complex three-dimensional (3D) geometries are imported as a 3DS format file from 3dsMax software with material and radiometric attributes. Based on 3D stylized model reconstruction of solid mesh, the 3D-geometrical solids are automatically converted into stylized models. In point-kernel calculation, the stylized source models are divided into point kernels and the mean free paths (mfp) are calculated by the intersections between shield stylized models and tracing ray. Compared with MCNP, the proposed method can implement complex 3D geometries visually, and the dose rate calculation is accurate and fast.

MIMO Channel Analysis Method using Ray-Tracing Propagation Model (전파예측모델을 이용한 MIMO 채널 분석 방법)

  • 오상훈;명로훈
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.8
    • /
    • pp.759-764
    • /
    • 2004
  • This paper proposes a method that estimates MIMO channel characteristics analytically using a 3D ray tracing propagation model. We calculate the discrete spatial correlation between sub-channels by considering phase differences of paths, and using this, estimate the mean capacity upper bound of MIMO channel by Jensen's inequality. This analysis model is a deterministic model that do not approach stochastically through measurement nor approach statistically through Monte-Carlo simulations, so this model has high efficiency for time and cost. And based on the electromagnetic theory, this model may analyze quantitatively the parameters which can affect the channel capacity - antenna pattern, polarization mutual coupling, antenna structure and etc. This model may be used for the development of an optimal antenna structure for MIMO systems.