• Title/Summary/Keyword: 3-D printing

Search Result 1,199, Processing Time 0.023 seconds

Effect of Bulk Shape on Mechanical Properties of Ti-6Al-4V Alloy Manufactured by Laser Powder Bed Fusion (Laser Powder Bed Fusion 공정으로 제조된 Ti-6Al-4V 합금의 형상 차이에 따른 기계적 특성 변화)

  • Haeum Park;Yeon Woo Kim;Seungyeon Lee;Kyung Tae Kim;Ji-Hun Yu;Jung Gi Kim;Jeong Min Park
    • Journal of Powder Materials
    • /
    • v.30 no.2
    • /
    • pp.140-145
    • /
    • 2023
  • Although the Ti-6Al-4V alloy has been used in the aircraft industry owing to its excellent mechanical properties and low density, the low formability of the alloy hinders broadening its applications. Recently, laser-powder bed fusion (L-PBF) has become a novel process for overcoming the limitations of the alloy (i.e., low formability), owing to the high degree of design freedom for the geometry of products having outstanding performance used in high-tech applications. In this study, to investigate the effect of bulk shape on the microstructure and mechanical properties of L-PBFed Ti-6Al-4V alloys, two types of samples are fabricated using L-PBF: thick and thin samples. The thick sample exhibits lower strength and higher ductility than the thin sample owing to the larger grain size and lower residual dislocation density of the thick sample because of the heat input during the L-PBF process.

Optimization of the salt content in fish surimi ink for food 3D Printing (식염 함량에 따른 식품 3D 프린팅용 연육 잉크의 적합성 조사)

  • Lee, Chae-Hyeon;Kim, Myeong-Eun;Yang, Yujia;Son, Yu-Jin;Lee, Ji-A;Lyu, Eun-Soon;Jung, Un Ju;Kang, Beodeul;Lee, Sang Gil
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.1
    • /
    • pp.29-33
    • /
    • 2021
  • The fish cake industry is attempting to overcome the standstill by adopting new production technologies, such as 3D printing technology. The characteristics of food 3D printing ink, including viscosity, hardness, and adhesiveness, are essential in food 3D printing technology. Therefore, in this study, the effect of salt on the gelation of surimi 3D ink and its texture for 3D printing were examined. After adding salt (1-4%) to fish meat, the viscosity and adhesiveness of fish meat was found to be increased by gelation. Among the fish surimi with various salt contents, surimi with 3% salt showed the most suitable characteristics, including viscosity, adhesiveness, and hardness, for a whirlwind and λ 3D printing model. Scanning electron microscopy showed that the addition of 3% salt resulted in the most adhesive surimi and less porous spaces. Overall, our study found that 3% salt would be suitable for 3D printing ink using fish surimi.

Development of Multi Piezo Ink-Jet Printing System Using Arbitrarily Waveform Generator (임의 전압파형발생기를 이용한 다중 피에조 잉크젯 3D 프린팅 장비 개발)

  • Kim, Jung Su;Kim, Dong Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.9
    • /
    • pp.781-786
    • /
    • 2015
  • Recently, studies of 3D printing methods have been working in various applications. For example, the powder base method laminates the prints by using a binding or laser sintering method. However, the draw back of this method is that the post process is time consuming and does not allow for parts to be rapidly manufactured. The binding method requires the post process while the time required for the post process is longer than the manufacturing time. This paper proposes a UV curing binding method with an integrated piezo printing head system. The optimization of an arbitrary waveform generation for the control of a UV curable resin droplet was researched, in addition to developed optimized UV curing processes in multi nozzle ink jet heads.

Influence of Powder Size on Properties of Selectively Laser-Melted- AlSi10Mg Alloys (AlSi10Mg 합금분말 크기가 선택적 레이저 용융된 3차원 조형체 특성에 미치는 영향)

  • Eom, Yeong Seong;Kim, Dong Won;Kim, Kyung Tae;Yang, Sang Sun;Choe, Jungho;Son, Injoon;Yu, Ji Hun
    • Journal of Powder Materials
    • /
    • v.27 no.2
    • /
    • pp.103-110
    • /
    • 2020
  • Aluminum (Al) - based powders have attracted attention as key materials for 3D printing because of their excellent specific mechanical strength, formability, and durability. Although many studies on the fabrication of 3D-printed Al-based alloys have been reported, the influence of the size of raw powder materials on the bulk samples processed by selective laser melting (SLM) has not been fully investigated. In this study, AlSi10Mg powders of 65 ㎛ in average particle size, prepared by a gas atomizing process, are additively manufactured by using an SLM process. AlSi10Mg powders of 45 ㎛ average size are also fabricated into bulk samples in order to compare their properties. The processing parameters of laser power and scan speed are optimized to achieve densified AlSi10Mg alloys. The Vickers hardness value of the bulk sample prepared from 45 ㎛-sized powders is somewhat higher than that of the 65 ㎛m-sized powder. Such differences in hardness are analyzed because the reduction in melt pool size stems from the rapid melting and solidification of small powders, compared to those of coarse powders, during the SLM process. These results show that the size of the powder should be considered in order to achieve optimization of the SLM process.

Evaluation and Development of Multi Thermal Bubble Ink Jet 3D Printing System (다중써멀버블 잉크젯방식의 3D 프린팅 시스템 개발 및 성능평가)

  • Shin, Mun Gwan;Bae, Sung Woo;Kim, Jung Su
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.9
    • /
    • pp.787-792
    • /
    • 2015
  • Recently, 3D printing technology is a hot issue in various industrial fields. According to the user's application, it allows for the free form fabrication method to be utilized in a wide range. The powder based fusion technique is one of the 3D printing methods. When using this method it is possible to apply the various binder jetting techniques such as piezo, thermal bubble jet, dispenser and so on. In this paper, a multi thermal bubble ink jet was integrated for jetting of powder binding material and developing a power fused 3D printing system. For high quality 3D printing parts, it needs an analysis and evaluation of the behavior of the thermal bubble ink jet head. In the experiment, a correlation between jetting binder quantity and layer thickness of powder was investigated, and a 3D part model was fabricated, which was used by measuring the scale factor.

Design and Manufacturing Technology of Heat Exchanger in Air Compressor for Railroad Vehicle by 3D Printing Process (3D 프린팅 적용 철도차량용 공기압축기의 열교환기 설계 및 제작 기술 연구)

  • Kim, Moosun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.802-809
    • /
    • 2017
  • 3D printing technology is a manufacturing process for products, in which polymer and metal materials are laminated to form structures. It is advantageous for manufacturing parts requiring a high degree of design freedom and functionality. In addition, it would be a suitable technology for the production of parts for railway vehicles in the future, due to the need to produce parts in small quantities. In order to fully exploit the advantages of 3D printing technology, it is necessary to consider the process characteristics during the design of the product. In this study, the redesign and manufacturing technology of the product considering the performance and process conditions were studied for the heat exchanger in the air compressor of railway vehicles, as a trial application of the 3D printing technique. First of all, the design concept to improve the performance of the heat exchanger was defined, and the design range was specified to satisfy the performance of the present heat exchanger analyzed experimentally. Then, the detailed design was revised considering the characteristics of the metal 3D printing process, such as the manufacturing restrictions and production time. Based on the final design, the product was fabricated by the 3D printing process using aluminum material, and it was confirmed that the dimensional accuracy was satisfied. The weight of the final product was reduced by 41% compared with the existing products. The results of this study will make it possible to develop an efficient product design process for 3D printing technology.

Evaluation of shear bond strength between metal core fabricated by 3D printing and dental porcelain (3D printing으로 제작된 금속 코어와 치과용 도재 간의 전단결합강도 평가)

  • Jung, Jae-Kwan;Lee, Su-Ok;Kim, Ki-Baek
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.4
    • /
    • pp.2585-2592
    • /
    • 2015
  • The purpose of this study was to evaluate the shear bond strength between metal core fabricated by 3D printing and dental porcelain. Thirty metal cores were fabricated(cast 15ea, 3D printing 15ea). The porcelain for each group was builded to the metal core. Sample was loaded to shear force(crosshead speed 1mm/min) in a universal material testing machine. The fracture samples were analyzed failure aspect. The means were statistical analyzed using by Mann-whitney test(${\alpha}=0.05$). The period of experimental(metal cores fabrication, dental porcelain build up, data analysis, statistical analysis, failure aspect analysis and others) for this study took six months. The $mean{\pm}SDs$ of shear bond strength was $50.14{\pm}1.60MPa$ for the cast group, and $54.36{\pm}3.18MPa$ for the 3D printing group(p=0.035). The failure aspect showed mixed failure. As a results, metal cores fabricated by 3D printing method were clinically acceptable range.

Effect of Shrinkage Characteristics of Cement-Based Composites by Extrusion and Lamination Process of Construction 3D Printing (건설용 3D 프린팅 압출 및 적층공정에 따른 시멘트계 복합재료의 수축 특성 영향)

  • Lee, Hojae;Kim, Won-Woo;Seo, Eun-A;Moon, Jae-Heum
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.6
    • /
    • pp.113-118
    • /
    • 2020
  • The purpose of this study is to evaluate the shrinkage characteristics of the cement-based composite for 3D printing construction, and to evaluate the shrinkage before/after extrusion and after printing during the printing process. As a result of evaluating the compressive strength by curing age of OPC-mix and printing-mix, similar trends were shown until 7 days of age, but the maximum shrinkage of 252 ㎛/m was larger in the case of OPC-mix compared to printing-mix. During the printing process, the compressive strength of the cementitious composite material after extrusion was about 6.5 MPa lower than the material before extrusion until the 7th day of age, but the level of strength on the 28th day of age was similar. As for the shrinkage characteristics, the result of shrinkage after printing showed greater shrinkage in the range of 220-260 ㎛/m compared to the result of shrinkage before extrusion.

Design and 3D-printing of titanium bone implants: brief review of approach and clinical cases

  • Popov Jr, Vladimir V.;Muller-Kamskii, Gary;Kovalevsky, Aleksey;Dzhenzhera, Georgy;Strokin, Evgeny;Kolomiets, Anastasia;Ramon, Jean
    • Biomedical Engineering Letters
    • /
    • v.8 no.4
    • /
    • pp.337-344
    • /
    • 2018
  • Additive manufacturing (AM) is an alternative metal fabrication technology. The outstanding advantage of AM (3D-printing, direct manufacturing), is the ability to form shapes that cannot be formed with any other traditional technology. 3D-printing began as a new method of prototyping in plastics. Nowadays, AM in metals allows to realize not only net-shape geometry, but also high fatigue strength and corrosion resistant parts. This success of AM in metals enables new applications of the technology in important fields, such as production of medical implants. The 3D-printing of medical implants is an extremely rapidly developing application. The success of this development lies in the fact that patient-specific implants can promote patient recovery, as often it is the only alternative to amputation. The production of AM implants provides a relatively fast and effective solution for complex surgical cases. However, there are still numerous challenging open issues in medical 3D-printing. The goal of the current research review is to explain the whole technological and design chain of bio-medical bone implant production from the computed tomography that is performed by the surgeon, to conversion to a computer aided drawing file, to production of implants, including the necessary post-processing procedures and certification. The current work presents examples that were produced by joint work of Polygon Medical Engineering, Russia and by TechMed, the AM Center of Israel Institute of Metals. Polygon provided 3D-planning and 3D-modelling specifically for the implants production. TechMed were in charge of the optimization of models and they manufactured the implants by Electron-Beam Melting ($EBM^{(R)}$), using an Arcam $EBM^{(R)}$ A2X machine.

Development of futurism fashion design based on 3D digital clothing technology (3D 가상착의를 활용한 미래주의 패션 디자인)

  • Cui, Xuemeng;Lee, Yoon Mee;Lee, Younhee
    • The Research Journal of the Costume Culture
    • /
    • v.30 no.5
    • /
    • pp.732-751
    • /
    • 2022
  • In this study, we aimed to apply 3D digital printing to basic clothing production and to propose futuristic fashion design and production methods that correspond to contemporary trends. Literature on future trends, dynamism, mechanical aesthetics, and experimentalism were used to define the characteristics of "futurism." Based on theoretical considerations about futurism, we created fashion designs using 3D digital printing methods. These designs were produced using the aesthetic characteristics of futurism; the 3D digital clothing program; and application of digital printing technologies to futuristic silhouettes, colors, and materials. The results were as follows: First, with the application of futurism as a fashion motif, we pursued collaboration between artistic work and fashion, and we then explored the possibility of creative expression. Second, harmony between achromatic and chromatic colors revealed even better dynamism and activeness, and the potential to express dynamism was observed. Third, with the development of fashion design processes based on 3D digital printing methodologies, it was found to be possible to eliminate the limitations of time and space, solve problems related to limited budget or communication, and positively influence the fashion industry by enhancing convenience and diversity. Fourth, with the development of fashion design that utilizes digital printing, it was found that problems related to time, space, or limited budget were able to be solved, as compared to the use of traditional printing and image reproduction.