• Title/Summary/Keyword: 3-D position

Search Result 2,275, Processing Time 0.03 seconds

Analysis of Current Characteristics Determined by Doping Profiles in 3-Dimensional Devices (3차원 구조 소자에서의 doping profile에 따른 전류 특성 분석)

  • Cho, Seong-Jae;Yun, Jang-Gn;Park, Il-Han;Lee, Jung-Hoon;Kim, Doo-Hyun;Lee, Gil-Seong;Lee, Jong-Duk;Park, Byung-Gook
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.475-476
    • /
    • 2006
  • Recently, the demand for high density MOSFET arrays are increasing. In implementing 3-D devices to this end, it is inevitable to ion-implant vertically in order to avoid screening effects caused by high silicon fins. In this study, the dependency of drain current characteristics on doping profiles is investigated by 3-D numerical analysis. The position of concentration peak (PCP) and the doping gradient are varied to look into the effects on primary current characteristics. Through these analyses, criteria of ion-implantation for 3-D devices are established.

  • PDF

Development of 3-Dimensional Position/Attitude Determination Radio-navigation System with FLAOA and TOA Measurements

  • Jeon, Jong-Hwa;Lim, Jeong-Min;Yoo, Sang-Hoon;Sung, Tae-Kyung
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.7 no.2
    • /
    • pp.61-71
    • /
    • 2018
  • Existing radio positioning systems have a drawback that the attitude of user's tag is difficult to be determined. Although forward link angle of arrival (FLAOA) technology that uses measurements of array antenna arranged in a tag among the angle of arrival (AOA) technologies can estimate attitude and positioning of tags, it cannot extend the estimated results into three-dimensional (3D) results due to complex non-linear model displayed because of the effects of 3D positioning and attitude in tags. This paper proposed a radio navigation technique that determines 3D attitude and positioning via FLAOA / time of arrival (TOA) integration. According to the order of determining attitude and positioning, two integration techniques were proposed. To analyze the performance of the proposed technique, MATLAB-based simulations were used to verify the performance. The simulation results showed that the first proposed method, TOA-FLAOA integrated technique, showed about 0.15 m of positioning error, and $2-3^{\circ}$ of attitude error performances regardless of the positioning space size whereas the second method, differenced FLAOA-TOA integrated technique, revealed a problem that a positioning error became larger as the size of the positioning space became larger.

Crystallographic Characterization of the (Bi, La)4Ti3O12 Film by High-Resolution Electron Microscopy (고분해능 전자현미경법을 이용한 (Bi, La)4Ti3O12 박막의 결정학적 특성 평가)

  • Lee, Doek-Won;Yang, Jun-Mo;Park, Tae-Su;Kim, Nam-Kyung;Yeom, Seung-Jin;Park, Ju-Chul;Lee, Soun-Young;Park, Sung-Wook
    • Korean Journal of Materials Research
    • /
    • v.13 no.7
    • /
    • pp.478-483
    • /
    • 2003
  • The crystallographic characteristics of the $(Bi, La)_4$$Ti_3$$O_{12}$ thin film, which is considered as an applicable dielectrics in the ferroelectric RAM device due to a low crystallization temperature and a good fatigue property, were investigated at the atomic scale by high resolution transmission electron microscopy and the high resolution Z-contrast technique. The analysis showed that a (00c) preferred orientation and a crystallization of the film were enhanced with the diffraction intensity increase of the (006) and (008) plane as the annealing temperature increased. It indicated a change of the atomic arrangement in the (00c) plane. Stacking faults on the (00c) plane were also observed. Through the comparison of the high-resolution Z-contrast image and the $Bi_4$$Ti_3$$O_{12}$ atomic model, it was evaluated that the intensity of the Bi atom was different according to the atomic plane, and it was attributed to a substitution of La atom for Bi at the specific atom position.

Optimal Relay Selection and Power Allocation in an Improved Low-Order-Bit Quantize-and-Forward Scheme

  • Bao, Jianrong;He, Dan;Xu, Xiaorong;Jiang, Bin;Sun, Minhong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.11
    • /
    • pp.5381-5399
    • /
    • 2016
  • Currently, the quantize-and-forward (QF) scheme with high order modulation and quantization has rather high complexity and it is thus impractical, especially in multiple relay cooperative communications. To overcome these deficiencies, an improved low complex QF scheme is proposed by the combination of the low order binary phase shift keying (BPSK) modulation and the 1-bit and 2-bit quantization, respectively. In this scheme, the relay selection is optimized by the best relay position for best bit-error-rate (BER) performance, where the relays are located closely to the destination node. In addition, an optimal power allocation is also suggested on a total power constraint. Finally, the BER and the achievable rate of the low order 1-bit, 2-bit and 3-bit QF schemes are simulated and analyzed. Simulation results indicate that the 3-bit QF scheme has about 1.8~5 dB, 4.5~7.5 dB and 1~2.5 dB performance gains than those of the decode-and-forward (DF), the 1-bit and 2-bit QF schemes, at BER of $10^{-2}$, respectively. For the 2-bit QF, the scheme of the normalized Source-Relay (S-R) distance with 0.9 has about 5dB, 7.5dB, 9dB and 15dB gains than those of the distance with 0.7, 0.5, 0.3 and 0.1, respectively, at BER of $10^{-3}$. In addition, the proposed optimal power allocation saves about 2.5dB much more relay power on an average than that of the fixed power allocation. Therefore, the proposed QF scheme can obtain excellent features, such as good BER performance, low complexity and high power efficiency, which make it much pragmatic in the future cooperative communications.

Development of Acoustic Positioning System for ROV using SBL System (SBL방식을 이용한 무인잠수정의 수중초음파 위치측정시스템 개발)

  • Yu, Son-Cheol;Byun, Seung-Woo;Kim, Joon-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.3
    • /
    • pp.808-814
    • /
    • 2010
  • In this paper we executed a SBL(Short Baseline) underwater acoustic positioning system that is a kind of underwater position estimation system to estimates the 3-dimensional position of ROV(Remotely Operated Vehicle) using hydrophones and DAQ(Data Acquisition) system in the basin which dimensions are $3{\times}3{\times}1.7(m)$. For this experiment, we let 4 hydrophones in different positions of the basin for receiver and 1 hydrophone is fixed on the underwater vehicle for transmitting sensor(pinger). These five hydrophones are communicated with each other to find the 3-D positions of the moving ROV in the basin. The measured signals are collected by DAQ system and the positions of the ROV are plotted by LabView program in real-time. To estimate the position of the ROV we used a trigonometric method. In X and Y plane the estimated data has a small errors but in Z plane the estimated data has large errors so we cannot use this data for position control. One solution of this problem is using depth sensor that implemented of the underwater vehicle. Hereafter, we will test in the ocean using designed SBL system.

Effect of Residual Stress on Raman Spectra in Tetrahedral Amorphous Carbon(ta-C) Film

  • Shin, Jin-Koog;Lee, Churl-Seung;Moon, Myoung-Woon;Oh, Kyu-Hwan;Lee, Kwang-Ryeol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.135-135
    • /
    • 1999
  • It is well known that Raman spectroscopy is powerful tool in analysis of sp3/sp3 bonding fraction in diamond-like carbon(DLC) films. Raman spectra of DLC film is composed of D-peak centered at 1350cm-1 and G-peak centered at 1530cm-1. The sp3/sp3 fraction is qualitatively acquired by deconvolution method. However, in case of DLC film, it is generally observed that G-peak position shifts toward low wavenumber as th sp3 fraction increases. However, opposite results were frequently observed in ta-C films. ta-C film has much higher residual compressive stress due to its high sp3 fraction compared to the DLC films deposited by CVD method. Effect of residual stress on G-peak position is most recommendable parameter in Raman analysis of ta-C, due to its smallest fitting error among many parameters acquired by peak deconvolution of symmetric spectra. In current study, the effect of residual stress on Raman spectra was quantitatively evaluated by free-hang method. ta-C films of different residual stress were deposited on Si-wafer by modifying DC-bias voltage during deposition. The variation of the G-peak position along the etching depth were observed in the free-hangs of 20~30${\mu}{\textrm}{m}$ etching depth. Mathematical result based on Airy stress function, was compared with experimental results. The more reliable analysis excluding stress-induced shift was possible by elimination of the Raman shift due to residual compressiove stress.

  • PDF

Quasi-breath-hold (QBH) Biofeedback in Gated 3D Thoracic MRI: Feasibility Study (게이트 흉부자기 공명 영상법과 함께 사용할 수 있는 의사호흡정지(QBH) 바이오 피드백)

  • Kim, Taeho;Pooley, Robert;Lee, Danny;Keall, Paul;Lee, Rena;Kim, Siyong
    • Progress in Medical Physics
    • /
    • v.25 no.2
    • /
    • pp.72-78
    • /
    • 2014
  • The aim of the study is to test a hypothesis that quasi-breath-hold (QBH) biofeedback improves the residual respiratory motion management in gated 3D thoracic MR imaging, reducing respiratory motion artifacts with insignificant acquisition time alteration. To test the hypothesis five healthy human subjects underwent two gated MR imaging studies based on a T2 weighted SPACE MR pulse sequence using a respiratory navigator of a 3T Siemens MRI: one under free breathing and the other under QBH biofeedback breathing. The QBH biofeedback system utilized the external marker position on the abdomen obtained with an RPM system (Real-time Position Management, Varian) to audio-visually guide a human subject for 2s breath-hold at 90% exhalation position in each respiratory cycle. The improvement in the upper liver breath-hold motion reproducibility within the gating window using the QBH biofeedback system has been assessed for a group of volunteers. We assessed the residual respiratory motion management within the gating window and respiratory motion artifacts in 3D thoracic MRI both with/without QBH biofeedback. In addition, the RMSE (root mean square error) of abdominal displacement has been investigated. The QBH biofeedback reduced the residual upper liver motion within the gating window during MR acquisitions (~6 minutes) compared to that for free breathing, resulting in the reduction of respiratory motion artifacts in lung and liver of gated 3D thoracic MR images. The abdominal motion reduction in the gated window was consistent with the residual motion reduction of the diaphragm with QBH biofeedback. Consequently, average RMSE (root mean square error) of abdominal displacement obtained from the RPM has been also reduced from 2.0 mm of free breathing to 0.7 mm of QBH biofeedback breathing over the entire cycle (67% reduction, p-value=0.02) and from 1.7 mm of free breathing to 0.7 mm of QBH biofeedback breathing in the gated window (58% reduction, p-value=0.14). The average baseline drift obtained using a linear fit was reduced from 5.5 mm/min with free breathing to 0.6 mm/min (89% reduction, p-value=0.017) with QBH biofeedback. The study demonstrated that the QBH biofeedback improved the upper liver breath-hold motion reproducibility during the gated 3D thoracic MR imaging. This system can provide clinically applicable motion management of the internal anatomy for gated medical imaging as well as gated radiotherapy.

3D Object Recognition Using Appearance Model Space of Feature Point (특징점 Appearance Model Space를 이용한 3차원 물체 인식)

  • Joo, Seong Moon;Lee, Chil Woo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.2
    • /
    • pp.93-100
    • /
    • 2014
  • 3D object recognition using only 2D images is a difficult work because each images are generated different to according to the view direction of cameras. Because SIFT algorithm defines the local features of the projected images, recognition result is particularly limited in case of input images with strong perspective transformation. In this paper, we propose the object recognition method that improves SIFT algorithm by using several sequential images captured from rotating 3D object around a rotation axis. We use the geometric relationship between adjacent images and merge several images into a generated feature space during recognizing object. To clarify effectiveness of the proposed algorithm, we keep constantly the camera position and illumination conditions. This method can recognize the appearance of 3D objects that previous approach can not recognize with usually SIFT algorithm.

A Study of Ship Wave Crest Pattern (항주파의 파봉에 대한 연구)

  • Lee, Byeong Wook;Lee, Changhoon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.28 no.1
    • /
    • pp.44-52
    • /
    • 2016
  • Kelvin's (1887) theory that predicts position of ship wave crest can be applied only in deep water. Havelock's (1907) theory that predicts cusp locus angle can be applied in whole water depths but cannot predict the position of ship wave crest. In this study, using the linear dispersion fully, we develop the equations to predict ship wave crest in whole water depths and, using the developed equations, we predict cusp locus angle. We simulate ship wave propagation using FLOW-3D in the condition of Johnson's (1985) hydraulic experiment and find that the cusp locus angles predicted by the present theory are close to numerical results of FLOW-3D and hydraulic experimental data. We also simulate for various conditions and compare numerical results of distances between adjacent wave crests and values predicted by the present theory. For Froude number less than unity, the numerical results are close to the values predicted by the theory. For Froude number greater than unity, the constant value of $C_1$ which determines the distance between the ship and the first ship wave crest is almost equal to zero and the numerical results of distances between adjacent ship waves excluding the first ship are close to the values predicted by the theory.

The Influence of Midsole Hardness and Sole Thickness of Sport Shoes on Ball Flex Angle with the Increment of Running Velocity (달리기 속도의 증가에 따른 운동화 중저의 경도와 신발바닥의 두께가 신발의 볼 굴곡각도에 미치는 영향)

  • Kwak, Chang-Soo;Mok, Seung-Han;Kwon, Oh-Bok
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.4
    • /
    • pp.153-168
    • /
    • 2005
  • The purposes of this study were to determine the influence of midsole hardness and sole thickness of sports shoes on ball flex angle and position with increment of running velocity. The subjects employed for this study were 10 college students who did not have lower extremity injuries for the last one year and whose running pattern was rearfoot striker of normal foot. The shoes used in this study had 3 different midsole hardness of shore A 40, shore A 50, shore A 60 and 3 different sole thickness of 17cm, 19cm, 21cm. The subjects were asked to run at 3 different speed of 2.0m/sec, 3.5m/sec, 5.0m/sec and their motions were videotaped with 4 S-VHS video cameras and 2 high speed video cameras and simultaneously measured with a force platform. The following results were obtained after analysing and comparing the variables. Minimum angle of each ball flex position were increased with the increment of running velocity and shoe sole thickness(P<0.05), but mid-sole hardness did not affect minimum ball flex angle. The position which minimum angle was shown as smallest was 'D'. Midsole hardness and sole thickness did not affect time to each ball flex minimum angle, total angular displacement of ball flex angle, and total angular displacement of torsion angle(P<0.05). The position which minimum angle was appeared to be earliest was similar at walking velocity, and E and F of midfoot region at running velocity. Total angular displacement of ball flex position tended to increase as shifted to heel. It was found that running velocity had effects on ball flex angle variables, but shoe sole thickness partially affected. It would be considered that running velocity made differences between analysis variables at walking and running when designing shoes. Also, it was regarded that shoes would be developed at separated region, because ball flex angle and position was shown to be different at toe and heel region. It is necessary that midsole hardness and thickness required to functional shoes be analyzed in the further study.