• Title/Summary/Keyword: 3-D position

Search Result 2,275, Processing Time 0.033 seconds

Development of an Offline Based Internal Organ Motion Verification System during Treatment Using Sequential Cine EPID Images (연속촬영 전자조사 문 영상을 이용한 오프라인 기반 치료 중 내부 장기 움직임 확인 시스템의 개발)

  • Ju, Sang-Gyu;Hong, Chae-Seon;Huh, Woong;Kim, Min-Kyu;Han, Young-Yih;Shin, Eun-Hyuk;Shin, Jung-Suk;Kim, Jing-Sung;Park, Hee-Chul;Ahn, Sung-Hwan;Lim, Do-Hoon;Choi, Doo-Ho
    • Progress in Medical Physics
    • /
    • v.23 no.2
    • /
    • pp.91-98
    • /
    • 2012
  • Verification of internal organ motion during treatment and its feedback is essential to accurate dose delivery to the moving target. We developed an offline based internal organ motion verification system (IMVS) using cine EPID images and evaluated its accuracy and availability through phantom study. For verification of organ motion using live cine EPID images, a pattern matching algorithm using an internal surrogate, which is very distinguishable and represents organ motion in the treatment field, like diaphragm, was employed in the self-developed analysis software. For the system performance test, we developed a linear motion phantom, which consists of a human body shaped phantom with a fake tumor in the lung, linear motion cart, and control software. The phantom was operated with a motion of 2 cm at 4 sec per cycle and cine EPID images were obtained at a rate of 3.3 and 6.6 frames per sec (2 MU/frame) with $1,024{\times}768$ pixel counts in a linear accelerator (10 MVX). Organ motion of the target was tracked using self-developed analysis software. Results were compared with planned data of the motion phantom and data from the video image based tracking system (RPM, Varian, USA) using an external surrogate in order to evaluate its accuracy. For quantitative analysis, we analyzed correlation between two data sets in terms of average cycle (peak to peak), amplitude, and pattern (RMS, root mean square) of motion. Averages for the cycle of motion from IMVS and RPM system were $3.98{\pm}0.11$ (IMVS 3.3 fps), $4.005{\pm}0.001$ (IMVS 6.6 fps), and $3.95{\pm}0.02$ (RPM), respectively, and showed good agreement on real value (4 sec/cycle). Average of the amplitude of motion tracked by our system showed $1.85{\pm}0.02$ cm (3.3 fps) and $1.94{\pm}0.02$ cm (6.6 fps) as showed a slightly different value, 0.15 (7.5% error) and 0.06 (3% error) cm, respectively, compared with the actual value (2 cm), due to time resolution for image acquisition. In analysis of pattern of motion, the value of the RMS from the cine EPID image in 3.3 fps (0.1044) grew slightly compared with data from 6.6 fps (0.0480). The organ motion verification system using sequential cine EPID images with an internal surrogate showed good representation of its motion within 3% error in a preliminary phantom study. The system can be implemented for clinical purposes, which include organ motion verification during treatment, compared with 4D treatment planning data, and its feedback for accurate dose delivery to the moving target.

A Study on the Welding Amount Estimation System combined with 3D CAD Tool (3차원 CAD 통합형 용접물량 산출 시스템에 관한 연구)

  • Ruy, Won-Sun;Kim, Ho-Kyeong;Ko, Dae-Eun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.7
    • /
    • pp.3184-3190
    • /
    • 2013
  • These days, the great part of design processes in the field of ship or offshore manufacturing are planed and implemented using the customized CAD system for each ship-building companies. It means that all information for design and production could be extracted and reused at the useful other area cost considerable time and efforts. The representative example is the estimation of welding length and material amount which is demanded during the construction of ship or offshore structures. The proper estimation of welding material to be used and the usage of them at the stage of schedule planning is mostly important to achieve the seamless process of production and expect the costing in advance. This study is related to the calculation of welding length and needed material amount at the stage of design complete utilizing the CAD system. The calculated amount are classified according to welding position, stage, block, bevel and welding type. Moreover it is possible to predict the working time for welding operation and could be used efficiently for the cost management using the results of this research.

Numerical Modeling of Flow Characteristics within the Hyporheic Zones in a Pool-riffle Sequences (여울-소 구조에서 지표수-지하수 혼합대의 흐름 특성 분석에 관한 수치모의 연구)

  • Lee, Du-Han;Kim, Young-Joo;Lee, Sam-Hee
    • Journal of Wetlands Research
    • /
    • v.14 no.1
    • /
    • pp.75-87
    • /
    • 2012
  • Hyporheic zone is a region beneath and alongside a stream, river, or lake bed, where there is mixing of shallow groundwater and surfacewater. Hyporheic exchange controls a variety of physical, biogeochemical and thermal processes, and provides unique ecotones in a aquatic ecosystem. Field and experimental observations, and modeling studies indicate that hyporheic exchange is mainly in response to pressure gradients driven by the geomorphological features of stream beds. In the reach scale of a stream, pool-riffle structures dominate the exchange patterns. Flow over a pool-riffle sequence develops recirculation zones and stagnation points, and this flow structures make irregular pressure gradient which is driving force of the hyporheic exchange. In this study, 3 D hydro-dynamic model solves the Reynolds-averaged Navier-Stokes equations for the surface water and Darcy's Law and the continuity equation for ground water. The two sets of equations are coupled via the pressure distribution along the interface. Simulation results show that recirculation zones and stagnation points in the pool-riffle structures dominantly control the upwelling and downwelling patterns. With decrease of recirculation zones, length of donwelling zone formed in front of riffles is reduced and position of maximum downwelling point moves downward. The numerical simulation could successfully predict the behavior of hyporheic exchange and contribute the field study, river management and restoration.

The Effect of Relaxation Technique on Reduction of Postoperative Pain (이완술 사용이 수술후 동통 감소에 미치는 영향)

  • 박정숙
    • Journal of Korean Academy of Nursing
    • /
    • v.15 no.1
    • /
    • pp.76-96
    • /
    • 1985
  • Postoperative pain is one of the most frequently occurred pain in hospitals, but it has been underestimated because it is only a part of postoperative physiological Process and may disappear in time. It is necessary that nurses me the relaxation technique, planning and implementing by themselves independently, to reduce this postoperative pain. This study is aimed at showing the effect of relaxation technique on reduction of postoperative pain, and exploring the factors influencing postoperative. pain Fifty-seven patients with abdominal surgery who admitted in attacked D Medical Center to K University in Daegu have been studied. Of them twenty-nine were experimental group and the remaining twenty-eight were control group. This study has been conducted for collecting data through interviews and observation from August 23 to October 24, 1984. The tools of this study were two kinds: Postoperative Pain Scale is obtained from a review of references by the researcher, and relaxation technique, designed to use postoperative setting adequately, is also obtained from a review of references by the researcher. After confiriming no significant differences between the two groups, the hypotheses were statistically verified by x²-test, t-test, and pearson Correlation Coefficient. The results of this study are summerized as follows; * The nam hypothesis that the experimental group who use relaxation technique will have less degree of postoperative pain than the control group who don't use relaxation technique is devided into three sub-hypotheses. 1. The first sub-hypothesis that the experimental group will have less score of postoperative pain than control group was accepted (t=7.810, p <.01). Even with controlling pain threshold, showing difference in some degree between the two groups, the experimental group has less score of postoperative pain than the control group. Therefore this confirms the acceptance of the first sub-hypothesis more strongly. 2. The second sub-hypothesis that the expermental group will have less frequency of analgesics than the control group is accepted (x²=9.85, p <.01). 3. The third sub-hypothesis that the experimental group will have less variation of pulse, respiration, and blood pressure between pre End post operative periods than the control group is rejected. So this hypothesis is reverified through comparing the variation of pulse, respiration, and blood pressure between pre and post changing Position to measure the pure effect of relaxation technique. pulse and respiration is significantly lowered in the experimental group (t=7.209, p<.01, t=3.473, p<.01), but systolic and diastolic blood pressure is not different significantly between the two groups (t= 1.309, p>.05, t=1. 727 p>.05). Therefore the third sub-hypothesis is partially accepted. Conclusively, the researcher thinks that it is necessary that nurses should provide patients with relaxation technique to reduce postoperative pain, and to increase independence of nursing.

  • PDF

Efficient Intermediate Joint Estimation using the UKF based on the Numerical Inverse Kinematics (수치적인 역운동학 기반 UKF를 이용한 효율적인 중간 관절 추정)

  • Seo, Yung-Ho;Lee, Jun-Sung;Lee, Chil-Woo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.6
    • /
    • pp.39-47
    • /
    • 2010
  • A research of image-based articulated pose estimation has some problems such as detection of human feature, precise pose estimation, and real-time performance. In particular, various methods are currently presented for recovering many joints of human body. We propose the novel numerical inverse kinematics improved with the UKF(unscented Kalman filter) in order to estimate the human pose in real-time. An existing numerical inverse kinematics is required many iterations for solving the optimal estimation and has some problems such as the singularity of jacobian matrix and a local minima. To solve these problems, we combine the UKF as a tool for optimal state estimation with the numerical inverse kinematics. Combining the solution of the numerical inverse kinematics with the sampling based UKF provides the stability and rapid convergence to optimal estimate. In order to estimate the human pose, we extract the interesting human body using both background subtraction and skin color detection algorithm. We localize its 3D position with the camera geometry. Next, through we use the UKF based numerical inverse kinematics, we generate the intermediate joints that are not detect from the images. Proposed method complements the defect of numerical inverse kinematics such as a computational complexity and an accuracy of estimation.

A STUDY OF FISHER'S ANGLE (Fisher's Angle에 관한 연구)

  • Kim, Yung-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.17 no.1
    • /
    • pp.7-21
    • /
    • 1979
  • This investigation was to analyse normal protrusive and lateral condylar pantographic records written on the sagittal plane and to study components of Fisher's angle and their interrelations. The purpose of this study was limited to (1) discussing the significance of sagittal pantographic record in diagnosis of occlusal disease and(2) basing for reasoning validity of measuring Fisher's angle which has been reported so far. As a result followings were concluded. 1. In each protrusive and lateral condylar movement path, five complicate factors such as initial straightness, distributed simple sigmoid type, simple curvature, initial tiny protruding convexity and tiny repeated sigmoid patterns were noted. Generally each condylar movement path was composed of two to three of these factors. 2. The distribution of positional interrelations of protrusive and lateral condylar paths could be divided into five categories; (a) protrusive-upper, (b) completely coinciding, (c) partially initial coinciding, (d) partially inverted crossing, and (e) completely inverting. Among these, protrusive path-upper positioned condyles were prevailed (79.2%). 3. The distribution of interrelations of protrusive and lateral condylar paths could be devided into five categories according to their distances in the course of movement. Among these, opening (95.8%) and paralleling (66.7%) were prevailing. 4. The involved number of characteristic heterogenous patterns of five categories in protrusive and lateral condylar movement recording relations at one simultaneous recordings was limited to three. However, in case of homogeneous patterns were repeated, usually three to four were included. 5. The maximum distance between protrusive and lateral condylar paths was 1.45mm at the location of 4mm advanced position from centric relation point and 3.90mm at the location of protrusive movement terminal. 6. It seemed to be that ,pantographic records should be consulted other clinical symptoms in order to make certain occlusion diagnosis. 7. At the present moment of investigation, expressing Fisher's angle as a degree revealed a lack due to inherent complexity of protrusive and lateral condylar movement paths. 8. The typical pattern of protrusive and lateral condylar paths written on a pantographic sagittal plate might be described as follows; (a) protrusive condylar path should be positioned upwardly, (b) both mainly be simple curvature, (c) interrelations mainly be opening or paralleling. 9. The mean amounts of separation between protrusive and lateral condylar movement path were $0.75{\pm}0.46$ at 4mm advanced location from centric relation and $1.74{\pm}0.64mm$ at the location of protrusive path terminal.

  • PDF

Gamma Ray Detection Processing in PET/CT scanner (PET/CT 장치의 감마선 검출과정)

  • Park, Soung-Ock;Ahn, Sung-Min
    • Journal of radiological science and technology
    • /
    • v.29 no.3
    • /
    • pp.125-132
    • /
    • 2006
  • The PET/CT scanner is an evolution in image technology. The two modalities are complementary with CT and PET images. The PET scan images are well known as low resolution anatomic landmak, but such problems may help with interpretation detailed anatomic framework such as that provided by CT scan. PET/CT offers some advantages-improved lesion localization and identification, more accurate tumor staging. etc. Conventional PET employs tranmission scan require around 4 min./bed position and 30 min. for whole body scan. But PET/CT scanner can reduced by 50% in whole body scan. Especially nowadays PET scanner LSO scintillator-based from BGO without septa and operate in 3-D acquisition mode with multidetectors CT. PET/CT scanner fusion problems solved through hardware rather than software. Such device provides with the capability to acquire accurately aligned anatomic and functional images from single scan. It is very important to effective detection from gamma ray source in PETdetector. And can be offer high quality diagnostic images. So we have study about detection processing of PET detector and high quality imaging process.

  • PDF

Extraction of the ship movement information by a radar target extractor (Radar Target Extractor에 의한 선박운동정보의 추출에 관한 연구)

  • Lee, Dae-Jae;Kim, Kwang-Sik;Byun, Duck-Soo
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.38 no.3
    • /
    • pp.249-255
    • /
    • 2002
  • This paper describes on the extraction of ship's real-time movement information using a combination full-function ARPA radar and ECS system that displays radar images and an electronic chart together on a single PC screen. The radar target extractor(RTX) board, developed by Marine Electronics Corporation of Korea, receives radar video, trigger, antenna bearing pulse and heading pulse signals from a radar unit and processes these signals to extract target information. The target data extracted from each pulse repetition interval in DSPs of RTX that installed in 16 bit ISA slot of a IBM PC compatible computer is formatted into a series of radar target messages. These messages are then transmitted to the host PC and displayed on a single screen. The position data of target in range and azimuth direction are stored and used for determining the center of the distributed target by arithmetic averaging after the detection of the target end. In this system, the electronic chart or radar screens can be displayed separately or simulaneously and in radar mode all information of radar targets can be recorded and replayed In spite of a PC based radar system, all essential information required for safe and efficient navigation of ship can be provided.

An Experimental Comparative Study of Radiography, Ultrasonography and CT Imaging in the IV Catheter Fragment (정맥내 카테터 조각의 엑스선, 초음파 및 CT 영상의 실험적 비교 연구)

  • Kweon, Dae Cheol
    • Journal of radiological science and technology
    • /
    • v.39 no.2
    • /
    • pp.185-191
    • /
    • 2016
  • The objective of this study was to detect the fragments generated during IV (intravenous) catheter injection of contrast medium and drug administration in a clinical setting and removal was performed by experimentally producing a phantom, and to compare the radiography, ultrasonography, and multi-detector computed tomography (MDCT) imaging and radiation dose. A 1 cm fragment of an 18 gage Teflon$^{(R)}$ IV catheter with saline was inserted into the IV control line. Radiography, CT, and ultrasonography were performed and radiography and CT dose were calculated. CT and ultrasonography showed an IV catheter fragment clinically and radiography showed no visible difference in the ability to provide a useful image of an IV catheter fragment modality (p >.05). Radiography of effective dose ($0.2139mSv{\cdot}Gy^{-1}{\cdot}cm^{-2}$) form DAP DAP ($0.93{\mu}Gy{\cdot}m^2 $), and dose length product (DLP) ($201mGy{\cdot}cm$) to effective dose was calculated as 0.483 mSv. IV catheter fragment were detected of radiography, ultrasonography and CT. These results can be obtained by menas of an excellent IV catheter fragment of detection capability CT. However, CT is followed by radiation exposure. IV catheter fragment confirming the position and information recommend an ultrasonography.

The Effects of Wearing Roller Shoes on Muscle Activity in The Lower Extremity During Walking (롤러신발과 일반신발의 착용 후 보행 시 하지근의 근전도 비교)

  • Chae, Woen-Sik;Lim, Young-Tae;Lee, Min-Hyung;Kim, Jung-Ja;Kim, Youn-Joung;Jang, Jae-Ik;Park, Woen-Kyoon;Jin, Jae-Hong
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.3
    • /
    • pp.137-148
    • /
    • 2006
  • The purpose of this study was to compare muscle activity in the lower extremity during walking wearing jogging and roller shoes. Twelve male middle school students (age: 15.0 yrs, height 173.7 cm, weight 587.7 N) who have no known musculoskeletal disorders were recruited as the subjects. Seven pairs of surface electrodes (QEMG8, Laxtha Korea, gain = 1,000, input impedance >$1012{\Omega}$, CMMR >100 dB) were attached to the right-hand side of the body to monitor the rectus femoris (RF), vastus medialis (VM), vastus lateralis (VL), biceps femoris (BF), tibialis anterior (TA), and medial (GM) and lateral gastrocnemius (GL) while subjects walked wearing roller and jogging shoes in random order at a speed of 1.1 m/s. An event sync unit with a bright LED light was used to synchronize the video and EMG recordings. EMG data were filtered using a 10 Hz to 350 Hz Butterworth band-passdigital filter and further normalized to the respective maximum voluntary isometric contraction EMG levels. For each trial being analyzed, five critical instants and four phases were identified from the recording. Averaged IEMG and peak IEMG were determined for each trial. For each dependent variable, paired t-test was performed to test if significant difference existed between shoe conditions (p<.05). The VM, TA, BF, and GM activities during the initial double limb stance and the initial single limb stance reduced significantly when going from jogging shoe to roller shoe condition. The decrease in EMG levels in those muscles indicated that the subjects locked the ankle and knee joints in an awkward fashion to compensate for the imbalance. Muscle activity in the GM for the roller shoe condition was significantly greater than the corresponding value for the jogging shoe condition during the terminal double limb stance and the terminal single limb stance. Because the subjects tried to keep their upper body weight in front of the hip to prevent falling backward, the GM activity for the roller shoe condition increased. It seems that there are differences in muscle activity between roller shoe and jogging shoe conditions. The differences in EMG pattern may be caused primarily by the altered position of ankle, knee, and center of mass throughout the walking cycle. Future studies should examine joint kinematics during walking with roller shoes.