• Title/Summary/Keyword: 3-D position

Search Result 2,275, Processing Time 0.028 seconds

Unity Engine-based Underwater Robot 3D Positioning Program Implementation (Unity Engine 기반 수중 로봇 3차원 포지셔닝 프로그램 구현)

  • Choi, Chul-Ho;Kim, Jong-Hun;Kim, Jun-Yeong;Park, Jun;Park, Sung-Wook;Jung, Se-Hoon;Sim, Chun-Bo
    • Smart Media Journal
    • /
    • v.11 no.9
    • /
    • pp.64-74
    • /
    • 2022
  • A number of studies related to underwater robots are being conducted to utilize marine resources. However, unlike ordinary drones, underwater robots have a problem that it is not easy to locate because the medium is water, not air. The monitoring and positioning program of underwater robots, an existing study for identifying underwater locations, has difficulty in locating and monitoring in small spaces because it aims to be utilized in large spaces. Therefore, in this paper, we propose a three-dimensional positioning program for continuous monitoring and command delivery in small spaces. The proposed program consists of a multi-dimensional positioning monitoring function and a ability to control the path of travel through a three-dimensional screen so that the depth of the underwater robot can be identified. Through the performance evaluation, a robot underwater could be monitored and verified from various angles with a 3D screen, and an error within the assumed range was verified as the difference between the set path and the actual position is within 6.44 m on average.

Comparison of Gait Patterns on Pregnant's Kinematic Factors and Lower-Limb Joint Moments During Pregnant Period (임신 기간에 따른 임산부 보행의 운동학적 요인과 하지 관절모멘트 패턴 비료)

  • Hah, Chong-Ku;Jang, Young-Kwan
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.32 no.3
    • /
    • pp.78-84
    • /
    • 2009
  • The purpose of this study was to compare gait patterns during pregnancy. Because of the changes in hormone levels and anatomical changes such as body mass, body-mass distribution, joint laxity, and musculotendinous strength that result from pregnancy, it was possible that there would be certain gait deviations associated with these changes. Three-dimensional gait analyses were performed from a self-selected pace, and six subjects(height : $163{\pm}5.3cm$, mass : $61.3{\pm}3.80kg$, $65.3{\pm}5.14kg$, $70.2{\pm}4.98kg$) participated in the three times(the early, middle and last years). 7 cameras(Proreflex MCU-240, Qualisys) and 2 force plates (Type 9286AA, Kistler) were used to acquire raw data. The parameters were calculated and analyzed with Visual-3D and Joint moments computed using inverse dynamics. In conclusion, pregnant women's gait patterns were changed during pregnancy period because pregnancy makes them physical changes. The main changes were joint moments and kinematic factors during pregnancy period. The pregnancy transformed normal gait pattern Into toe out position. Therefore, exercise programs to improve muscle activity were necessary where joint moments were small. The development of simulator should be studied for pregnant women's tailored shoes and accessories in future.

High Speed and Robust Control System with Deadbeat Disturbance Observer for 3D Eye Imaging Equipment (망막의 3차원 영상화를 위한 데드비트 외란 관측기를 가진 고속, 고강성 제어 시스템)

  • 고종선;이태훈;김영일
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.5
    • /
    • pp.418-426
    • /
    • 2003
  • To show a retina shape and thickness on the computer monitor, a laser has been used in Scanning Laser Ophthalmoscope(SLO) equipment using the traveling difference. This method requires exact synchronous control of laser traveling in optic system to show a clear 3-dimensional image of retina To obtain this image, this exact synchronism is very important for making the perfect plane scanning. In this study, a high speed and synchronous control of the galvanometer to make 3-dimensional retina image is presented. For the more, deadbeat load torque observer is added to the PI controller for compensation of the position error arisen in the high speed control. As a result, the proposed control system has a robust and precise response against the load torque variation appeared in high speed control. A stability and usefulness are verified by the computer simulation and the experiment.

A Tool Box to Evaluate the Phased Array Coil Performance Using Retrospective 3D Coil Modeling (3차원 코일 모델링을 통해 위상배열코일 성능을 평가하기 위한 프로그램)

  • Perez, Marlon;Hernandez, Daniel;Michel, Eric;Cho, Min Hyoung;Lee, Soo Yeol
    • Investigative Magnetic Resonance Imaging
    • /
    • v.18 no.2
    • /
    • pp.107-119
    • /
    • 2014
  • Purpose : To efficiently evaluate phased array coil performance using a software tool box with which we can make visual comparison of the sensitivity of every coil element between the real experiment and EM simulation. Materials and Methods: We have developed a $C^{{+}{+}}$- and MATLAB-based software tool called Phased Array Coil Evaluator (PACE). PACE has the following functions: Building 3D models of the coil elements, importing the FDTD simulation results, and visualizing the coil sensitivity of each coil element on the ordinary Cartesian coordinate and the relative coil position coordinate. To build a 3D model of the phased array coil, we used an electromagnetic 3D tracker in a stylus form. After making the 3D model, we imported the 3D model into the FDTD electromagnetic field simulation tool. Results: An accurate comparison between the coil sensitivity simulation and real experiment on the tool box platform has been made through fine matching of the simulation and real experiment with aids of the 3D tracker. In the simulation and experiment, we used a 36-channel helmet-style phased array coil. At the 3D MRI data acquisition using the spoiled gradient echo sequence, we used the uniform cylindrical phantom that had the same geometry as the one in the FDTD simulation. In the tool box, we can conveniently choose the coil element of interest and we can compare the coil sensitivities element-by-element of the phased array coil. Conclusion: We expect the tool box can be greatly used for developing phased array coils of new geometry or for periodic maintenance of phased array coils in a more accurate and consistent manner.

Information Management System of Solid Waste Landfill based on 3 Dimensional Method (3차원기법을 이용한 폐기물매립지 정보관리시스템 구축 연구)

  • Park, Jin-Kyu;Cho, Sung-Youn;Kim, Byung-Tae;Lee, Nam-Hoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.24 no.4
    • /
    • pp.39-48
    • /
    • 2016
  • An information management system for a solid waste landfill site was developed, in this study, to optimize the operation and management of solid waste landfill in real time in addition to provide the information of landfill status to the landfill operator, public official concerned and local residents. The landfill information management system is composed of two systems (Solid waste landfill history management system and landfill operation and performance management system). The solid waste landfill history management system based on automated RFID/LPR system allows landfill operators to provide information of waste collection vehicles and received waste. In addition, the system aids in the identification of 3-dimensional (3D) position for landfilled solid wastes. Using the landfill operation and performance management system based on 3D laser scanner delivers information about landfill volume, settlement, landfill density, and current landfill capacity to landfill operators in real time, resulting in optimum space utilization. Ultimately, this system would dramatically reduce exposure of landfill operators to hazardous materials and improve the productivity of landfill operations.

An Accuracy Analysis on the Broadcast Ephemeris and IGS RTS (방송궤도력과 IGS RTS의 정확도 분석)

  • Kim, Mingyu;Kim, Jeongrae
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.5
    • /
    • pp.425-432
    • /
    • 2016
  • When user estimates user's position, GPS positions can be obtained from the navigation message transmitted from the GPS. However, the broadcast ephemeris cannot be used in the applications required high-level accuracies because it can cause errors of several meters. To correct satellite positions and clocks, user can use RTS corrections provided by IGS. In this paper, the accuracy of broadcast and RTS corrections are analyzed by comparing with the IGS final for 3-months. The RTS errors are analyzed for each user's locations and satellite blocks. The correlations between errors and shadow condition, and solar and geomagnetic activities are analyzed. The latency is applied to the RTS corrections, and these are extrapolated by polynomial. Then, the extrapolated RTS are compared with true RTS. The single-day performances of the PPP by broadcast ephemeris and RTS corrected ephemeris are analyzed. As a result, RTS 3D orbit and clock errors are 1/20 and 1/3 less than broadcast ephemeris errors. 3D positioning error of the RTS is 1/5 less than that of broadcast ephemeris.

Assessment of the proximity between the mandibular third molar and inferior alveolar canal using preoperative 3D-CT to prevent inferior alveolar nerve damage

  • Lee, Byeongmin;Park, Youngju;Ahn, Janghoon;Chun, Jihyun;Park, Suhyun;Kim, Minjin;Jo, Youngserk;Ahn, Somi;Kim, Beulha;Choi, Sungbae
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.37
    • /
    • pp.30.1-30.7
    • /
    • 2015
  • Background: The inferior alveolar nerve (IAN) may be injured during extraction of the mandibular third molar, causing severe postoperative complications. Many methods have been described for evaluating the relative position between the mandibular third molar and the inferior alveolar canal (IAC) on panoramic radiography and computed tomography, but conventional radiography provides limited information on the proximity of these two structures. The present study assessed the benefits of three-dimensional computed tomography (3D-CT) prior to surgical extraction of the mandibular third molar, to prevent IAN damage. Methods: This retrospective study included 4917 extractions in 3555 patients who presented for extraction of the mandibular third molars. The cases were classified into three groups, according to anatomical relationship between the mandibular third molars and the IAC on panoramic radiography and whether 3D-CT was performed. Symptoms of IAN damage were assessed using the touch-recognition test. Data were compared using the chi-square test and Fisher's exact test. Results: Among the 32 cases of IAN damage, 6 cases were included in group I (0.35 %, n = 1735 cases), 23 cases in group II (1.1 %, n = 2063 cases), and 3 cases in group III (0.27 %, n = 1119 cases). The chi-square test showed a significant difference in the incidence of IAN damage between groups I and II. No significant difference was observed between groups I and III using Fisher's exact test. In the 6 cases of IAN damage in group I, the mandibular third molar roots were located lingual relative to the IAC in 3 cases and middle relative to the IAC in 3 cases. The overlap was ${\geq}2mm$ in 3 of 6 cases and 0-2 mm in the remaining 3 cases. The mean distance between the mandibular third molar and IAC was 2.2 mm, the maximum distance 12 mm, and the minimum distance 0.5 mm. Greater than 80 % recovery was observed in 15 of 32 (46.8 %) cases of IAN damage. Conclusions: 3D-CT may be a useful tool for assessing the three-dimensional anatomical relationship and proximity between the mandibular third molar and IAC in order to prevent IAN damage during extraction of mandibular third molars.

Self-localization of a Mobile Robot for Decreasing the Error and VRML Image Overlay (오차 감소를 위한 이동로봇 Self-Localization과 VRML 영상오버레이 기법)

  • Kwon Bang-Hyun;Shon Eun-Ho;Kim Young-Chul;Chong Kil-To
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.4
    • /
    • pp.389-394
    • /
    • 2006
  • Inaccurate localization exposes a robot to many dangerous conditions. It could make a robot be moved to wrong direction or damaged by collision with surrounding obstacles. There are numerous approaches to self-localization, and there are different modalities as well (vision, laser range finders, ultrasonic sonars). Since sensor information is generally uncertain and contains noise, there are many researches to reduce the noise. But, the correctness is limited because most researches are based on statistical approach. The goal of our research is to measure more exact robot location by matching between built VRML 3D model and real vision image. To determine the position of mobile robot, landmark-localization technique has been applied. Landmarks are any detectable structure in the physical environment. Some use vertical lines, others use specially designed markers, In this paper, specially designed markers are used as landmarks. Given known focal length and a single image of three landmarks it is possible to compute the angular separation between the lines of sight of the landmarks. The image-processing and neural network pattern matching techniques are employed to recognize landmarks placed in a robot working environment. After self-localization, the 2D scene of the vision is overlaid with the VRML scene.

Comparative Analysis of Chloroplast Genome of Dysphania ambrosioides (L.) Mosyakin & Clemants Understanding Phylogenetic Relationship in Genus Dysphania R. Br.

  • Kim, Yongsung;Park, Jongsun;Chung, Youngjae
    • Korean Journal of Plant Resources
    • /
    • v.32 no.6
    • /
    • pp.644-668
    • /
    • 2019
  • Dysphania ambrosioides (L.) Mosyakin & Clemants which belongs to Chenopodiaceae/Amaranthaceae sensu in APG system has been known as a useful plant in various fields as well as an invasive species spreading all over the world. To understand its phylogenetic relationship with neighbour species, we completed chloroplast genome of D. ambrosioides collected in Korea. Its length is 151,689 bp consisting of four sub-regions: 83,421 bp of large single copy (LSC) and 18,062 bp of small single copy (SSC) regions are separated by 25,103 bp of inverted repeat (IR) regions. 128 genes (84 protein-coding genes, eight rRNAs, and 36 tRNAs) were annotated. The overall GC content of the chloroplast genome is 36.9% and those in the LSC, SSC and IR regions are 34.9%, 30.3%, and 42.7%, respectively. Distribution of simple sequence repeats are similar to those of the other two Dysphania chloroplasts; however, different features can be utilized for population genetics. Nucleotide diversity of Dysphania chloroplast genomes 18 genes including two ribosomal RNAs contains high nucleotide diversity peaks, which may be genus or species-specific manner. Phylogenetic tree presents that D. ambrosioides occupied a basal position in genus Dysphania and phylogenetic relation of tribe level is presented clearly with complete chloroplast genomes.

A Study on the Cutting Path Optimization using Improved Genetic Algorithm (개선된 유전자 알고리즘을 이용한 부재 절단경로 최적화에 관한 연구)

  • Y.K. Han;C.D. Jang
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.3
    • /
    • pp.90-98
    • /
    • 2000
  • Nesting and cutting path optimization have a great effect on price competitions and improvement of productivity in various industries such as the shipbuilding, the auto, the clothing, and so on. But the theoretical approach on the development of cutting path optimization algorithm, which can be applied effectively in the shipbuilding, has not been performed enough because parts are so complex and various. In this study, a new solution has been presented to solve the cutting path problem in 2-D cutting by using improved genetic algorithm. The presented optimization algorithm can search not only the cutting sequence of parts but also the position of piercing point by applying the effective neighborhood solution generating method

  • PDF