Unity Engine-based Underwater Robot 3D Positioning Program Implementation

Unity Engine 기반 수중 로봇 3차원 포지셔닝 프로그램 구현

  • 최철호 (순천대학교 스마트융합학부) ;
  • 김종훈 (순천대학교 스마트융합학부) ;
  • 김준영 (순천대학교 스마트융합학부) ;
  • 박준 (순천대학교 스마트융합학부) ;
  • 박성욱 (순천대학교 스마트융합학부) ;
  • 정세훈 (순천대학교 컴퓨터공학과) ;
  • 심춘보 (순천대학교 인공지능공학부)
  • Received : 2022.06.30
  • Accepted : 2022.10.07
  • Published : 2022.10.31

Abstract

A number of studies related to underwater robots are being conducted to utilize marine resources. However, unlike ordinary drones, underwater robots have a problem that it is not easy to locate because the medium is water, not air. The monitoring and positioning program of underwater robots, an existing study for identifying underwater locations, has difficulty in locating and monitoring in small spaces because it aims to be utilized in large spaces. Therefore, in this paper, we propose a three-dimensional positioning program for continuous monitoring and command delivery in small spaces. The proposed program consists of a multi-dimensional positioning monitoring function and a ability to control the path of travel through a three-dimensional screen so that the depth of the underwater robot can be identified. Through the performance evaluation, a robot underwater could be monitored and verified from various angles with a 3D screen, and an error within the assumed range was verified as the difference between the set path and the actual position is within 6.44 m on average.

해양자원을 활용하기 위한 수중 로봇과 관련된 연구가 다수 진행되고 있다. 그러나 일반 드론과 다르게 수중 로봇은 매개체가 공기가 아닌 물이기 때문에 위치 파악이 쉽지 않은 문제점이 존재한다. 수중 위치를 확인하기 위한 기존 연구인 수중 로봇의 모니터링 및 포지셔닝 프로그램은 대규모 공간에서 활용하기 위한 목적을 가지고 있기 때문에 소규모의 공간에서 위치 파악 및 모니터링에 어려움을 가지고 있다. 이에 본 논문에서는 소규모 공간에서 지속적인 모니터링과 명령 전달을 위한 3차원 포지셔닝 프로그램을 제안한다. 제안된 프로그램은 수중 로봇의 위치에 깊이를 확인할 수 있도록 다차원 포지셔닝 모니터링 기능과 3차원 화면을 통해 이동 경로 제어할 수 있는 기능으로 구성된다. 성능평가를 통해 수중 로봇이 수조 모습과 동일하게 출력되어 3차원 화면으로 다양한 각도에서 모니터링 확인이 가능하였으며, 설정 경로와 실제 위치의 차이가 평균 6.44m 이내로써 상정 범위 내의 오차를 확인하였다.

Keywords

Acknowledgement

순천대학교 교연비 사업에 의하여 연구되었음

References

  1. Y. Seo, and N. Go, "Control of Underwater Robot with 4 Thrusters", Master's of Thesis of Chosun University of Control and Instrumentation, 2010.
  2. D. Shin, and S. Na, "Autonomous Fish Robot," The paper of the Electronic Communication Technology Research Institute, Vol. 8, No. 1, pp. 89-94, 2005.
  3. Y. Kim, S. Kim, K. Yang, J. Lee, C, Yim, and D. Kim, "Design and Control of a Biomimetic Fish Robot," Transactions of the Korean Society of Mechanical Engineers A, Vol. 36, No. 1, pp. 1-7, Jan. 2012. https://doi.org/10.3795/KSME-A.2012.36.1.001
  4. D. Lee, M. Hyeon, and J. Kim, "Robot fish element technology and trends," The Magazine of the IEIE, Vol. 38, No. 7, pp.52-56, 2011.
  5. D. Lee, M. Hyean, and D. Kim. "Localization System for Robot Fish Using Plane Markers," Institute of Control, Robotics and Systems, pp. 508-512, May, 2011.
  6. Zhan, Dongzhou, H, Zheng, and W. Xu, "Tracking Control of Autonomous Underwater Vehicles with Acoustic Localization and Extended Kalman Filter," Applied Sciences, Vol. 11, No. 17, pp. 8038-8055, Aug. 2021. https://doi.org/10.3390/app11178038
  7. W. Wang, M. Zhu, and B. Yang, "Positioning Combination Method of USBL Using Four-Element Stereo Array," Sensors, Vol. 21, No. 22, pp. 7722-7737, Nov. 2021. https://doi.org/10.3390/s21227722
  8. H. Cho, S. Jeong, D. Ji, N. Tran, and H. Choi, "Study on Control System of Integrated Unmanned Surface Vehicle and Underwater Vehicle," Sensors, Vol. 20, No. 9, pp. 2633-2654, May, 2020. https://doi.org/10.3390/s20092633
  9. R. Lin, F. Zhang, D. Li, M. Lin, G. Zhou, and C. Yang, "An Improved Localization Method for the Transition between Autonomous Underwater Vehicle Homing and Docking," Sensors, Vol. 21. No. 7, pp. 2468-2486, Apr. 2021.
  10. blueprint Subsea, https://www.blueprintsubsea.com/seatrac/seatracstandard, detection (accessed Feb., 25, 2022).
  11. J. Choi, P. Lee, and S. Moon, "Design and Implementation of Real-Time Call Monitoring System for PBX Based on Serial Communication," Korean Institute of Information Scientists and Engineers, Vol. 29, No. 2, pp. 91-93, Oct. 2002.
  12. S. Jang, "Protocol Design for Improving the Reliability of Serial Communication for Aviation," KSAS 2021 Fall Conference, pp. 1506-1507, 2021.
  13. S. Yoon, "A Study On Unity 3D Engine in the Educational Perspective," The Korean Society Of Computer And Information, Vol. 23, No. 2, pp. 246-249, Jul. 2015.
  14. S. Kim, G. Song, H. Lee, G. Kang, K. Im, and S. Kim, "An Efficient Use Method for Unity 3D Engine," The Korean Society Of Computer And Information, Vol. 21, No. 1, pp. 333-334, Jan. 2013.
  15. H. Lee, S. Ryoo, and S. Seo, "A Comparative Study on the Structure and Implementation of Unity and Unreal Engine 4," Journal of the Korea Computer Graphics Society, Vol. 25, No. 4, pp. 17-24, Sep. 2019. https://doi.org/10.15701/kcgs.2019.25.4.17
  16. Tae Kwang Electronics Corporation, http://tkec.co.kr/products/acoustic-positioning-system (accessed Feb, 25, 2022).