• 제목/요약/키워드: 3-D numerical computation

검색결과 131건 처리시간 0.029초

Femoral Fracture load and damage localization pattern prediction based on a quasi-brittle law

  • Nakhli, Zahira;Ben Hatira, Fafa;Pithioux, Martine;Chabrand, Patrick;Saanouni, Khemais
    • Structural Engineering and Mechanics
    • /
    • 제72권2호
    • /
    • pp.191-201
    • /
    • 2019
  • Finite element analysis is one of the most used tools for studying femoral neck fracture. Nerveless, consensus concerning either the choice of material characteristics, damage law and /or geometric models (linear on nonlinear) remains unreached. In this work, we propose a numerical quasi-brittle damage model to describe the behavior of the proximal femur associated with two methods to evaluate the Young modulus. Eight proximal femur finite elements models were constructed from CT scan data (4 donors: 3 women; 1 man). The numerical computations showed a good agreement between the numerical curves (load - displacement) and the experimental ones. A very encouraging result is obtained when a comparison is made between the computed fracture loads and the experimental ones ($R^2=0.825$, Relative error =6.49%). All specific numerical computation provided very fair qualitative matches with the fracture patterns for the sideway fall simulation. Finally, the comparative study based on 32 simulations adopting linear and nonlinear meshing led to the conclusion that the quantitatively results are improved when a nonlinear mesh is used.

스플릿라인 TVC 시스템을 적용한 핀틀 추력조절 노즐의 유동해석 및 추력 성능 예측 (Numerical Study and Thrust Prediction of Pintle-Controlled Nozzle with Split-line TVC System)

  • 조하나
    • 한국추진공학회지
    • /
    • 제26권3호
    • /
    • pp.43-53
    • /
    • 2022
  • 본 연구에서는 스플릿라인 TVC를 적용한 핀틀 추력조절 노즐에 대한 유동해석을 수행하고 추력성능을 예측하였다. 해석 결과로 도출된 추력계수를 시험결과와 비교하여 수치해석 결과를 검증하였으며, 동일한 수치해석 기법을 적용하여 주요 성능 변수인 운용고도, 핀틀 스트로크 위치, TVC 각도에 따른 1/10 크기의 노즐의 유동특성을 확인하였다. TVC 각도가 증가할수록 추력손실이 발생하였고, 핀틀 스트로크 위치에 따라 AF의 경향성이 달랐다. 해석결과를 기반으로 반응표면법을 적용하여 추력계수에 대한 관계식을 도출하였고, 해석 결과와 평균 1.2% 수준의 근소한 차이를 가지는 추력성능 모델을 생성하였다.

병렬화된 Chimera 격자 기법을 이용한 다단 로켓의 단분리 운동 해석 (Numerical Analysis on Separation Dynamics of Multi-stage Rocket System Using Parallelized Chimera Grid Scheme)

  • 고순흠;최성진;김종암;노오현;박정주
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2002년도 춘계 학술대회논문집
    • /
    • pp.47-52
    • /
    • 2002
  • The supersonic flow around multi-stage rocket system is analyzed using 3-D compressible unsteady flow solver. A Chimera overset grid technique is used for the calculation of present configuration and grid around the core rocket is composed of 3 zones to represent fins in the core rocket. Flow solver is parallelized to reduce the computation time, and an efficient parallelization algorithm for Chimera grid technique is proposed. AUSMPW+ scheme is used for the spatial discretization and LU-SGS for the time integration. The flow field around multi-stage rocket was analyzed using this developed solver, and the results were compared with that of a sequential solver The speed-up ratio and the efficiency were measured in several processors. As a result, the computing speed with 12 processors was about 10 times faster than that of a sequential solver. Developed flow solver is used to predict the trajectory of booster in separation stage. From the analyses, booster collides against core rocket in free separation case. So, additional jettisoning forces and moments needed for a safe separation are examined.

  • PDF

컨테이너의 자동랜딩을 위한 레이저센서 기반의 절대위치 검출 알고리즘: 3차원 측정 (Part I) (Position Detection Algorithm for Auto-Landing Containers by Laser-Sensor, Part I: 3-D Measurement)

  • 홍금식;임성진;홍경태
    • 한국해양공학회지
    • /
    • 제21권4호
    • /
    • pp.45-54
    • /
    • 2007
  • In the context of auto-landing containers from a container ship to a truck or automatic guided vehicle and vice versa, this research investigates three schemes, one in Part I and two in Part II, for measuring the absolute position of a container. Coordinate transformations between the reference-coordinate, sensor-coordinate, and body-coordinate systems are briefly discussed. The scheme explored in Part I aims the use of three laser-slit sensors, which are relatively inexpensive. In this case, nine nonlinear equations are formulated for six unknown variables (three for orientation and three for position), so a closed-form solution is not available. Instead, an approximate solution through linearization was derived. An advantage of the method in Part I is its ability to measure an absolute position in 3D space, while a disadvantage is the computation time required to obtain pseudo-inverses and the approximate nature of the obtained solution. Numerical examples are provided.

연강 판재에 대한 연강 구의 고속경사충돌 수치해석 (Numerical Simulation of High-Velocity Oblique Impact of Mild Steel Spheres Against Mild Steel Plates)

  • 유요한;장순남;정동택
    • 대한기계학회논문집A
    • /
    • 제26권3호
    • /
    • pp.576-585
    • /
    • 2002
  • A three-dimensional Lagrangian explicit time-integration finite element code for analyzing the dynamic impact phenomena was developed. It uses four node tetrahedral elements. In order to consider the effects of strain rate hardening, strain hardening and thermal softening, which are frequently observed in high-velocity deformation phenomena, Johnson-Cook model is used as constitutive model. For more accurate and robust contact force computation, the defense node contact algorithm was adopted and implemented. In order to evaluate the performance of the newly developed three-dimensional hydrocode NET3D, numerical simulations of the oblique impact of mild steel plate by mild steel sphere were carried out. Ballistic limit about various oblique angle between 0 degree and 80 degree was estimated through a series of simulations with different initial velocities of sphere. Element eroding by equivalent plastic strain was applied to mild steel spheres and targets. Ballistic limits and fracture characteristics obtained from simulation were compared with experimental results conducted by Finnegan et al. From numerical studies, the following conclusions were reached. (1) Simulations could successfully reproduce the key features observed in experiment such as tensile failure termed "disking"at normal impacts and outwards bending of partially formed plus segments termed "hinge-mode"at oblique impacts. (2) Simulation results fur 60 degrees oblique impact at 0.70 km/s and 0.91 km/s were compared with experimental results and Eulerian hydrocode CTH simulation results. The Lagrangian code NET3D is superior to Eulerian code CTH in the computational accuracy. Agreement with the experimentally obtained final deformed cross-sections of the projectile is excellent. (3) Agreement with the experimental ballistic limit data, particularly at the high-obliquity impacts, is reasonably good. (4) The simulation result is not very sensitive to eroding condition but slightly influenced by friction coefficient.

Numerical simulation and analytical assessment of STCC columns filled with UHPC and UHPFRC

  • Nguyen, Chau V.;Le, An H.;Thai, Duc-Kien
    • Structural Engineering and Mechanics
    • /
    • 제70권1호
    • /
    • pp.13-31
    • /
    • 2019
  • A nonlinear finite element model (FEM) using ATENA-3D software to simulate the axially compressive behavior of circular steel tube confined concrete (CSTCC) columns infilled with ultra high performance concrete (UHPC) was presented in this paper. Some modifications to the material type "CC3DNonlinCementitious2User" of UHPC without and with the incorporation of steel fibers (UHPFRC) in compression and tension were adopted in FEM. The predictions of utimate strength and axial load versus axial strain curves obtained from FEM were in a good agreement with the test results of eighteen tested columns. Based on the results of FEM, the load distribution on the steel tube and the concrete core was derived for each modeled column. Furthermore, the effect of bonding between the steel tube and the concrete core was clarified by the change of friction coefficient in the material type "CC3DInterface" in FEM. The numerical results revealed that the increase in the friction coefficient leads to a greater contribution from the steel tube, a decrease in the ultimate load and an increase in the magnitude of the loss of load capacity. By comparing the results of FEM with experimental results, the appropriate friction coefficient between the steel tube and the concrete core was defined as 0.3 to 0.6. In addition to the numerical evaluation, eighteen analytical models for confined concrete in the literature were used to predict the peak confined strength to assess their suitability. To cope with CSTCC stub and intermediate columns, the equations for estimating the lateral confining stress and the equations for considering the slenderness in the selected models were proposed. It was found that all selected models except for EC2 (2004) gave a very good prediction. Among them, the model of Bing et al. (2001) was the best predictor.

터널 설계조건을 고려한 하중분배율의 정량적 산정에 관한 연구 -ring-cut 굴착공법을 중심으로- (A Study on the Quantitative Evaluation of the Load Distribution Factors Considering the Design Conditions of Tunnel Especially for the Ring-cut Excavation Method)

  • 장석부;문현구
    • 한국지반공학회지:지반
    • /
    • 제14권5호
    • /
    • pp.5-16
    • /
    • 1998
  • 공사중 터널은 막장부의 종방향 및 횡방향 아치거동에 의하여 주변 지반은 3차원적 변형거동을 보이나, 터널 안정성 해석에는 전산효율 등의 이유로 2차원 수치해석법이 일반적으로 적용되고 있다. 하중분배율은 터널의 굴진효과를 고려하기 위하여 2차원 해석에 도입된 것으로 지반변위, 숏크 리트 및 록볼트와 같은 1차 지보재의 하중 등과 같은 해석결과에 큰 영향을 미친다. 또한, 3차원 해석을 이용한 기존의 연구에 의하면, 지반의 변형특성, 터널크기, 굴진장 등이 하중분배율에 주요한 영향을 미친다는 사실이 입증되었다. 그러나, 설계조건에 대한 하중분배율의 정량적 산정법의 부재 로 인하여 실제 해석시에는 설계조건을 무시한 하중분배율이 적용되고 있는 실정이다. 이에, 본 논문에서는 기존 연구(정 대열, 1993)에서 제시한 72개의 3차원 해석결과에 대한 회귀분석을 통하여 하중분배율을 정량적으로 산정할 수 있는 방법을 제시하였다. 또한. ring-cut공법은 막장의 자립성 이 매우 불량한 조건에 적용되는 공법임에도 불구하고 기존의 2차원 해석 법으로는 막장코아의 진 지효과를 고려하지 못하는 문제점이 있었다. 따라서, 2차원 및 3차원 수치해석을 통하여 ring-cut공 법에 대한 기존 해석법의 문제점을 검토하였으며 본 공법에 대한 하중분배율의 보정치를 제시하였 다.

  • PDF

철도차량 마루부재 압출공정의 3 차원 유한요소해석 (Three-Dimensional Finite Element Analysis for Extrusion of the Underframe of a Railroad Vehicle)

  • 박근;이영규;양동열;이동헌
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1999년도 압출 및 인발 심포지엄
    • /
    • pp.5-8
    • /
    • 1999
  • The present work is concerned with three-dimensional finite element analysis of the hollow section extrusion process using a porthole die. For economic computation, mismatching refinement, an efficient domain decomposition method with different mesh density for each subdomain, is implemented. The proposed method improves the computational efficiency significantly, especially fur the three-dimensional analysis of extrusion problems. As a numerical example, extrusion of the underframe part of a railroad vehicle are analyzed. For three-dimensional mesh generation of a complicated shape with hexahedral elements, a modified grid-based approach with the surface element layer is utilized. The analysis results are then successfully reflected on the industrial porthole die design.

  • PDF

웨이블릿을 이용한 파수영역 전자파 산란 해석법 연구 (A Study of Spectral Domain Electromagnetic Scattering Analysis Applying Wavelet Transform)

  • 빈영부;주세훈;이정흠;김형동
    • 한국전자파학회논문지
    • /
    • 제11권3호
    • /
    • pp.337-344
    • /
    • 2000
  • 파수영역에서 모멘트법의 엄피던스 행렬의 특정을 관찰하고 이를 웨이블릿 변환을 이용하여 효율적으로 표현 하는 방법을 연구하였다. 영상 선호처리 분야에서 자주 사용되는 이차원 쿼드트리(2-D Quadtree)방법(행렬의 $\phi$ 부분에만 웨이블릿 변환을 적용하는 방법)을 적용하여 모멘트 행렬을 성기게 만들었다. 웨이블릿이 적용된 모멘트 행렬을 CG( Conjugate-Gradient)법을 이용하여 모멘트 법의 계산량과 메모리를 줄였다. 수치적 결과는 정사 각형 실린더의 경우 임피던스 행렬의 0이 아닌 값이 O($N^{1.6}$)으로 증가하는 것을 관찰하였다.

  • PDF

고속월쉬변환을 이용한 비선형 시스템의 3계층 최적제어 (Three-Level Optimal Control of Nonlinear Systems Using Fast Walsh Transform)

  • 김태훈;신승권;조영호;이한석;이재춘;안두수
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제50권11호
    • /
    • pp.505-513
    • /
    • 2001
  • This paper presents the new three-level optimal control scheme for the large scale nonlinear systems, which is based on fast walsh transform. It is well known that optimization for nonlinear systems leads to the resolution of a nonlinear two point boundary value problem which always requires a numerical iterative technique for their solution. However, Three-level costate coordination can avoid two point boundary condition in subsystem. But this method also has the defect that must solve high order differential equation in intermediate level. The proposed method makes use of fast walsh transform, therefore, is simple in computation because of solving algebra equation instead of differential equation.

  • PDF