• Title/Summary/Keyword: 3-D numerical analysis

Search Result 2,002, Processing Time 0.031 seconds

Analysis of Material Deformation Behavior in Nanoindentation Process by using 3D Finite Element Analysis and its Experimental Verification (3차원 유한요소해석을 이용한 나노인덴테이션 공정에서의 소재거동해석 및 실험적 검증)

  • 이정우;윤성원;강충길
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1174-1177
    • /
    • 2003
  • In this study, to achieve the optimal conditions for mechanical hyper-fine pattern fabrication process, deformation behavior of the materials during indentation was studied with numerical method by ABAQUS S/W. Polymer (PMMA) and brittle materials (Si, Pyrex glass) were used as specimens, and forming conditions to reduce the elastic recover and pile-up was proposed. The indenter was modeled a 3D rigid surface. Minimum mesh sizes of specimens are 1-10nm. Comparison between the experimental data and numerical result demonstrated that the finite element approach is capable of reproducing the loading-unloading behavior of a nanoindentation test. The result of the investigation will be applied to the fabrication of the hyper-fine pattern.

  • PDF

3D Finite Element-based Study on Skin-pass Rolling - Part I : Finite Element Analysis (3차원 유한요소법에 기초한 조질 압연 공정 해석 - Part I : 유한요소해석)

  • Yoon, S.J.;Hwang, S.M.
    • Transactions of Materials Processing
    • /
    • v.25 no.2
    • /
    • pp.130-135
    • /
    • 2016
  • Rolled products often have residual stresses or strip waves that are beyond the customer’s tolerance. To resolve this problem, skin-pass rolling is widely used during post-processing of such products. Because a short contact length compared to the strip width is a characteristic of skin-pass rolling, several numerical analyses have been previously conducted based on a two-dimensional approach. In the current study, a series of simulations was conducted using numerical analysis of three-dimensional elastic-plastic finite element method.

Numerical analysis of dynamic response of jacket structures subject to slamming forces by breaking waves

  • Woo, Chanjo;Chun, Insik;Navaratnam, Christy Ushanth;Shim, Jaeseol
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.4
    • /
    • pp.404-417
    • /
    • 2017
  • The present study numerically analyzed the dynamic behavior of 3D framed structures subject to impulsive slamming forces by violent breaking waves. The structures were modeled using multiple lumped masses for the vertical projections of each member, and the slamming forces from the breaking waves were concentrated on these lumped masses. A numerical algorithm was developed to properly incorporate the slamming forces into a dynamic analysis to numerically determine the structural responses. Then, the validity of the numerical analysis was verified using the results of an existing hydraulic experiment. The numerical and experimental results for various model structures were generally in good agreement. The uncertainties concerning the properties of the breaking waves used in the verification are also discussed here.

Deformation Technology for Thick Plate Using Single Pass Line Heating by High Frequency Induction Heating (고주파 유도 단일패스 선상가열 유기 후판 성형 기술)

  • Lee, K.S.;Eom, D.H.;Kim, C.W.;Pyun, S.Y.;Son, D.H.;Gong, G.Y.;Kim, B.M.;Lee, J.H.
    • Transactions of Materials Processing
    • /
    • v.20 no.6
    • /
    • pp.439-449
    • /
    • 2011
  • The temperature distribution and subsequent permanent deformation of SS400 carbon steel plate subjected to an induction-based line heating process were studied by a numerical method involving coupled 3-D electromagnetic-thermal-structural analysis. The numerical study revealed that the amount of permanent deformation is strongly related to the Joule loss caused by such process conditions as input power and moving speed of the heat source. To validate the numerical analysis results, line heating experiments were carried out with a high frequency(HF) induction heating(IH) equipment capable of bending thick plate with the moving accuracy of ${\pm}0.1mm$ in heating coil position. The amount of permanent deformation increased with decreasing moving speed and increasing input power.

Impacts of wave and tidal forcing on 3D nearshore processes on natural beaches. Part I: Flow and turbulence fields

  • Bakhtyar, R.;Dastgheib, A.;Roelvink, D.;Barry, D.A.
    • Ocean Systems Engineering
    • /
    • v.6 no.1
    • /
    • pp.23-60
    • /
    • 2016
  • The major objective of this study was to develop further understanding of 3D nearshore hydrodynamics under a variety of wave and tidal forcing conditions. The main tool used was a comprehensive 3D numerical model - combining the flow module of Delft3D with the WAVE solver of XBeach - of nearshore hydro- and morphodynamics that can simulate flow, sediment transport, and morphological evolution. Surf-swash zone hydrodynamics were modeled using the 3D Navier-Stokes equations, combined with various turbulence models (${\kappa}-{\varepsilon}$, ${\kappa}-L$, ATM and H-LES). Sediment transport and resulting foreshore profile changes were approximated using different sediment transport relations that consider both bed- and suspended-load transport of non-cohesive sediments. The numerical set-up was tested against field data, with good agreement found. Different numerical experiments under a range of bed characteristics and incident wave and tidal conditions were run to test the model's capability to reproduce 3D flow, wave propagation, sediment transport and morphodynamics in the nearshore at the field scale. The results were interpreted according to existing understanding of surf and swash zone processes. Our numerical experiments confirm that the angle between the crest line of the approaching wave and the shoreline defines the direction and strength of the longshore current, while the longshore current velocity varies across the nearshore zone. The model simulates the undertow, hydraulic cell and rip-current patterns generated by radiation stresses and longshore variability in wave heights. Numerical results show that a non-uniform seabed is crucial for generation of rip currents in the nearshore (when bed slope is uniform, rips are not generated). Increasing the wave height increases the peaks of eddy viscosity and TKE (turbulent kinetic energy), while increasing the tidal amplitude reduces these peaks. Wave and tide interaction has most striking effects on the foreshore profile with the formation of the intertidal bar. High values of eddy viscosity, TKE and wave set-up are spread offshore for coarser grain sizes. Beach profile steepness modifies the nearshore circulation pattern, significantly enhancing the vertical component of the flow. The local recirculation within the longshore current in the inshore region causes a transient offshore shift and strengthening of the longshore current. Overall, the analysis shows that, with reasonable hypotheses, it is possible to simulate the nearshore hydrodynamics subjected to oceanic forcing, consistent with existing understanding of this area. Part II of this work presents 3D nearshore morphodynamics induced by the tides and waves.

Wave Diffractions by Submerged Flat Plate in oblique Waves (경사파중 수중평판에 의한 파랑변형)

  • Cho, I.H.;Kim, H.J.
    • Journal of Korean Port Research
    • /
    • v.10 no.1
    • /
    • pp.53-61
    • /
    • 1996
  • This paper describes the effect of wave control using submerged flat plate by the numerical calculation and the hydraulic model test. The boundary element method is used to develop a numerical solution for the flow field caused by monochromatic oblique waves incident upon an infinitely long, sumerged flat plate situated in arbitrary water depth. The effect of wave blocking is examined according to the change of length, submerged depth of flat plate and incident angles. Numerical results show that longer length, shallower submergence of flat plate and larger incident angles enhance the effect of wave blocking. To validate numerical analysis method, hydraulic model test was conducted in 2-D wave flume with 60 cm metal sheet. Reflected waves are extracted from water surface elevation in front of the location of a submerged plate by least square method with 3 wave gages. From comparing experimental results with numerical results, efficiency of numerical analysis method by this study could be confirmed well within wide ranges of wave frequencies.

  • PDF

IMMERSED BOUNDARY METHOD FOR THE ANALYSIS OF 2D FLOW OVER A CYLINDER AND 3D FLOW OVER A SPHERE (원통 주위의 2차원 유동과 구 주위의 3차원 유동해석을 위한 가상경계법 개발)

  • Fernandes, D.V.;Suh, Y.K.;Kang, S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.10a
    • /
    • pp.194-199
    • /
    • 2007
  • IB (immersed boundary) method is one of the prominent tool in computational fluid dynamics for the analysis of flows over complex geometries. The IB technique simplyfies the solution procedure by eliminating the requirement of complex body fitted grids and it is also superior in terms of memory requirement. In this study we have developed numerical code (FOTRAN) for the analysis of 2D flow over a cylinder using IB technique. The code is validated by comparing the wake lengths and separation angles given by Guo et. al. We employed fractional-step procedure for solving the Navier-Stokes equations governing the flow and discrete forcing IB technique for imposing boundary conditions. Also we have developed a 3D code for the backward-facing-step flow and flow over a sphere. The reattachment length in backward-facing-step flow was compared with the one given by Nie and Armaly, which has proven the validity of our code.

  • PDF

Design Optimization of a Staggered Dimpled Channel Using Neural Network Techniques (신경회로망기법을 사용한 엇갈린 딤플 유로의 최적설계)

  • Shin, Dong-Yoon;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.3 s.42
    • /
    • pp.39-46
    • /
    • 2007
  • This study presents a numerical procedure to optimize the shape of staggered dimple surface to enhance turbulent heat transfer in a rectangular channel. The RBNN method is used as an optimization technique with Reynolds-averaged Navier-Stokes analysis of fluid flow and heat transfer with shear stress transport (SST) turbulence model. The dimple depth-to-dimple print diameter (d/D), channel height-to-dimple print diameter ratio (H/D), and dimple print diameter-to-pitch ratio (D/S) are chosen as design variables. The objective function is defined as a linear combination of heat transfer related term and friction loss related term with a weighting factor. Latin Hypercube Sampling (LHS) is used to determine the training points as a mean of the design of experiment. The optimum shape shows remarkable performance in comparison with a reference shape.

ANALYSIS ON COMPRESSIBLE FLOW WITHIN A SWIRL INJECTOR (스월 인젝터 내 압축성 유동 해석)

  • Suh Y.K.;Kang S.M.;Heo H.S.
    • Journal of computational fluids engineering
    • /
    • v.11 no.2 s.33
    • /
    • pp.40-48
    • /
    • 2006
  • In the present, The theoretical and numerical results of gas flow characteristics inside a swirl injector are presented. For this purpose a one-dimensional (theoretical) model and 2D/3D CFD models are proposed for use in the design of the injector. It was found that contradictory to the classical theory about the compressible flow, the swirl has a significant effect on the mass flow rate and the choking conditions. It was found that the one-dimensional model provides reasonably accurate results compared with the 2D/3D numerical results, and thus can be used at the initial stage of the swirl-injector design process.

Comparison of fully coupled hydroelastic computation and segmented model test results for slamming and whipping loads

  • Kim, Jung-Hyun;Kim, Yonghwan;Korobkin, Alexander
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.4
    • /
    • pp.1064-1081
    • /
    • 2014
  • This paper presents a numerical analysis of slamming and whipping using a fully coupled hydroelastic model. The coupled model uses a 3-D Rankine panel method, a 1-D or 3-D finite element method, and a 2-D Generalized Wagner Model (GWM), which are strongly coupled in time domain. First, the GWM is validated against results of a free drop test of wedges. Second, the fully coupled method is validated against model test results for a 10,000 twenty-foot equivalent unit (TEU) containership. Slamming pressures and whipping responses to regular waves are compared. A spatial distribution of local slamming forces is measured using 14 force sensors in the model test, and it is compared with the integration of the pressure distribution by the computation. Furthermore, the pressure is decomposed into the added mass, impact, and hydrostatic components, in the computational results. The validity and characteristics of the numerical model are discussed.