• Title/Summary/Keyword: 3-D modeling of structure

Search Result 572, Processing Time 0.031 seconds

Evaluation of Effective Stiffness for 3D Beam with Repeated Structure (반복 구조로 구성된 3차원 보의 유효 강성 계산)

  • Chung Ilsup
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.7 s.172
    • /
    • pp.170-176
    • /
    • 2005
  • Analysis of structures which are composed of numerous repeated unit structures can be simplified by using homogenized properties. If the unit structure is repeated in one direction, the whole structure may be regarded as a beam. Once the effective stiffness is obtained from the analysis of the unit structure in a proper way, the effort for the detail modeling of the global structure is not required, and the real structure can be replaced simply with a beam. This study proposes a kinematical periodicity constraint to be imposed on the FE model of the unit structure, which improves the accuracy of the effective stiffness. The method is employed to a one dimensionally arrayed 3D structure containing periodically repeated un-symmetric holes. It is demonstrated that the deformation behavior of the homogenized beam agrees well with that of the real structure.

Application of Three-dimensional Scanning, Haptic Modeling, and Printing Technologies for Restoring Damaged Artifacts

  • Jo, Young Hoon;Hong, Seonghyuk
    • Journal of Conservation Science
    • /
    • v.35 no.1
    • /
    • pp.71-80
    • /
    • 2019
  • This study examined the applicability of digital technologies based on three-dimensional(3D) scanning, modeling, and printing to the restoration of damaged artifacts. First, 3D close-range scanning was utilized to make a high-resolution polygon mesh model of a roof-end tile with a missing part, and a 3D virtual restoration of the missing part was conducted using a haptic interface. Furthermore, the virtual restoration model was printed out with a 3D printer using the material extrusion method and a PLA filament. Then, the additive structure of the printed output with a scanning electron microscope was observed and its shape accuracy was analyzed through 3D deviation analysis. It was discovered that the 3D printing output of the missing part has high dimensional accuracy and layer thickness, thus fitting extremely well with the fracture surface of the original roof-end tile. The convergence of digital virtual restoration based on 3D scanning and 3D printing technology has helped in minimizing contact with the artifact and broadening the choice of restoration materials significantly. In the future, if the efficiency of the virtual restoration modeling process is improved and the material stability of the printed output for the purpose of restoration is sufficiently verified, the usability of 3D digital technologies in cultural heritage restoration will increase.

Identifying Considerations for Developing SLAM-based Mobile Scan Backpack System for Rapid Building Scanning (신속한 건축물 스캔을 위한 SLAM기반 이동형 스캔백팩 시스템 개발 고려사항 도출)

  • Kang, Tae-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.3
    • /
    • pp.312-320
    • /
    • 2020
  • 3D scanning began in the field of manufacturing. In the construction field, a BIM (Building Information Modeling)-based 3D modeling environment was developed and used for the overall construction, such as factory prefabrication, structure construction inspection, plant facility, bridge, tunnel structure inspection using 3D scanning technology. LiDARs have higher accuracy and density than mobile scanners but require longer registration times and data processing. On the other hand, in interior building space management, relatively high accuracy is not needed, and the user can conveniently move with a mobile scan system. This study derives considerations for the development of Simultaneous Localization and Mapping (SLAM)-based Scan Backpack systems that move freely and support real-time point cloud registration. This paper proposes the mobile scan system, framework, and component structure to derive the considerations and improve scan productivity. Prototype development was carried out in two stages, SLAM and ScanBackpack, to derive the considerations and analyze the results.

Design of motion-adaptable 3D printed impact protection pad (동작 가변적 3D 프린팅 충격보호패드의 설계)

  • Park, Junghyun;Lee, Jinsuk;Lee, Jeongran
    • The Research Journal of the Costume Culture
    • /
    • v.30 no.3
    • /
    • pp.403-413
    • /
    • 2022
  • The purpose of this study was to develop a 3D mesh-type impact protection pad with excellent motion adaptability and functionality by applying 3D printing technology. The hexagonal 3D mesh, which constitutes the basic structure of the pad, comprises two types: small and large. The bridge connecting the basic units was designed as the I-type, V-type, IV-type, and VV-type. After evaluating the characteristics of the bridge, it was found that the V-type bridge had the highest flexibility and tensile elongation. The hip joint pad and knee pad were completed by combining the hexagonal 3D mesh structure with the optimal bridge design. The impact protection pad was printed using a fused deposition modeling-type 3D printer with a filament made of thermoplastic polyurethane material, and the protection pad's performance was evaluated. When an impact force of approximately 6,500N was applied to the pad, the force attenuation percentage was 78%, and when an impact force of approximately 8,000N was applied, the force attenuation percentage was 75%. Through these results, it was confirmed that the 3D-printed impact protection pad with a hexagonal 3D mesh structure connected by a V-shaped bridge developed in this study can adapt to changes in the body surface according to movement and provides excellent impact protection performance.

Interface Design of Virtual Modeling Dataand Nonlinear Analysis Program (Virtual Modeling Data와 비선형 해석 프로그램의 Interface 설계)

  • Park, Jae-Guen;Lee, Heon-Min;Jo, Sung-Hoon;Lee, Kwang-Myong;Shin, Hyun-Mock
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.100-103
    • /
    • 2008
  • Recently Development of construction system that subjective operators share and control information efficiently based on the three-dimensional space and design information throughout life cycle of construction project is progressing dynamically. In case of civil structures which are infrastructure, Demand for structure of complex system which has multi-functions such as super and smart bridges and express rails is increasing and system development which computerizes and integrates process of structure design is in need. For that, research about link way between three dimensional modeling data and structure analysis programs should be preceded. In this research, therefore, research about interface design between three dimensional virtual modeling data to automate efficient civil-structure-design and nonlinear finite element analysis program which is made up of reinforced concrete material model that express material's character clearly.

  • PDF

Modeling of 3-D Embedded Inductors Fabricated in LTCC Process (저온 동시소성 공정으로 제작된 3차원 매립 인덕터 모델링)

  • 이서구;최종성;윤일구
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.4
    • /
    • pp.344-348
    • /
    • 2002
  • As microelectronics technology continues to progress, there is also a continuous demand on highly integration and miniaturization of systems. For example, it is desirable to package several integrated circuits together in multilayer structure, such as multichip modules, to achieve higher levels of compactness and higher performance. Passive components (i.e., capacitors, resistors, and inductors) are very important fort many MCM applications. In addition, the low-temperature co-fired ceramic (LTCC) process has considerable potential for embedding passive components in a small area at a low cost. In this paper, we investigate a method of statistically modeling integrated passive devices from just a small number of test structures. A set of LTCC inductors is fabricated and their scattering parameters (s-parameters) are measured for a range of frequencies from 50MHz to 5GHz. An accurate model for each test structure is obtained by using a building block based modeling methodology and circuit parameter optimization using the HSPICE circuit simulator.

AR based ornament design system for 3D printing

  • Aoki, Hiroshi;Mitanin, Jun;Kanamori, Yoshihiro;Fukui, Yukio
    • Journal of Computational Design and Engineering
    • /
    • v.2 no.1
    • /
    • pp.47-54
    • /
    • 2015
  • In recent years, 3D printers have become popular as a means of outputting geometries designed on CAD or 3D graphics systems. However, the complex user interfaces of standard 3D software can make it difficult for ordinary consumers to design their own objects. Furthermore, models designed on 3D graphics software often have geometrical problems that make them impossible to output on a 3D printer. We propose a novel AR (augmented reality) 3D modeling system with an air-spray like interface. We also propose a new data structure (octet voxel) for representing designed models in such a way that the model is guaranteed to be a complete solid. The target shape is based on a regular polyhedron, and the octet voxel representation is suitable for designing geometrical objects having the same symmetries as the base regular polyhedron. Finally, we conducted a user test and confirmed that users can intuitively design their own ornaments in a short time with a simple user interface.

Evaluation of Effective Stiffness for 3D Beam with Repeated Structure

  • Chung, Il-Sup
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.2
    • /
    • pp.25-29
    • /
    • 2006
  • Analysis of structures which are composed of numerous repeated unit structures can be simplified by using homogenized properties. If the unit structure is repeated in one direction, the whole structure may be regarded as a beam. Once the effective stiffness is obtained from the analysis of the unit structure in a proper way, the effort for the detail modeling of the global structure is not required, and the real structure can be replaced simply with a beam. This study proposes a kinematical periodicity constraint to be imposed on the FE model of the unit structure, which improves the accuracy of the effective stiffness. The method is employed to a one dimensionally arrayed 3D structure containing periodically repeated unsymmetrical holes. It is demonstrated that the deformation behavior of the homogenized beam agrees well with that of the real structure.

Safety Analysis of Reservoir Dikes in South Korea through the Interpretation of the Electrical Resistivity Data Considering Three-dimensional Structure (3차원 구조를 고려한 전기비저항 탐사자료 해석을 통한 국내 저수지 제체 안전성 분석)

  • Song, Sung-Ho;Yong, Hwan-Ho;Lee, Gyu-Sang;Cho, In-Ky
    • Geophysics and Geophysical Exploration
    • /
    • v.22 no.3
    • /
    • pp.160-167
    • /
    • 2019
  • Resistivity inversion result may be distorted if the seepage line fluctuation within central core with the change of reservoir water level as well as the conductivity of the reservoir water is not taken into consideration because the reservoir dike is composed of three-dimensional (3D) resistivity structure. Consequently, to accurately analyze the resistivity changes inside the reservoir dike according to the change of reservoir water level, 3D electrical resistivity modeling for the 2D survey line considering topography and physical properties of dam components was carried out. In addition, 2D inversion was performed with the simulated 2D resistivity data for a given 3D model in order to compare it with the inversion result of real field data. For 283 reservoirs in Korea, 2D inversion results for the simulated 2D data and field 2D resistivity data were compared. Finally, the reservoirs with an inversion ratio of 50% or less were selected as reservoirs that require further precise investigation.

A Study on 3D Character Animation Production Based on Human Body Anatomy (인체 해부학을 바탕으로 한 3D 캐릭터 애니메이션 제작방법에 관한 연구)

  • 백승만
    • Archives of design research
    • /
    • v.17 no.2
    • /
    • pp.87-94
    • /
    • 2004
  • 3D character animation uses the various entertainment factors such as movie, advertisement, game and cyber idol and occupies an important position in video industry. Although character animation makes various productions and real expressions possible, it is difficult to make character like human body without anatomical understanding of human body. Human body anatomy is the basic knowledge which analyzes physical structure anatomically, gives a lot of helps to make character modeling and make physical movement and facial expression delicately when character animation is produced. Therefore this study examines structure and proportion of human body and focuses on character modeling and animation production based on anatomical understanding of human body.

  • PDF