• Title/Summary/Keyword: 3-D localization

Search Result 359, Processing Time 0.026 seconds

The 3 Dimensional Triangulation Scheme based on the Space Segmentation in WPAN

  • Lee, Dong Myung;Lee, Ho Chul
    • Journal of Engineering Education Research
    • /
    • v.15 no.5
    • /
    • pp.93-97
    • /
    • 2012
  • Most of ubiquitous computing devices such as stereo camera, ultrasonic sensor based MIT cricket system and other wireless sensor network devices are widely applied to the 2 Dimensional(2D) localization system in today. Because stereo camera cannot estimate the optimal location between moving node and beacon node in Wireless Personal Area Network(WPAN) under Non Line Of Sight(NLOS) environment, it is a great weakness point to the design of the 2D localization system in indoor environment. But the conventional 2D triangulation scheme that is adapted to the MIT cricket system cannot estimate the 3 Dimensional(3D) coordinate values for estimation of the optimal location of the moving node generally. Therefore, the 3D triangulation scheme based on the space segmentation in WPAN is suggested in this paper. The measuring data in the suggested scheme by computer simulation is compared with that of the geographic measuring data in the AutoCAD software system. The average error of coordinates values(x,y,z) of the moving node is calculated to 0.008m by the suggested scheme. From the results, it can be seen that the location correctness of the suggested scheme is very excellent for using the localization system in WPAN.

Approximate 3D Localization Mechanism in Wireless Sensor Network (무선 센서 네트워크 환경에서 3차원 근사 위치추적 기법)

  • Shim, Jaeseok;Lim, Yujin;Park, Jaesung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.9
    • /
    • pp.614-619
    • /
    • 2014
  • In WSN (Wireless Sensor Networks) based surveillance system, it needs to know the occurrence of events or objects and their locations, because the data have no meaning without location information. Using traditional 2D localization mechanisms provide good accuracy where altitude is fixed. But the mapping the position estimated by 2D localization to the real world can cause an error. Even though 3D localization mechanisms provide better accuracy than 2D localization, they need four reference nodes at least and high processing overhead. In our surveillance system, it is needed to estimate the height of the detected object in order to determine if the object is human. In this paper, we propose a height estimation mechanism which does not require many reference nodes and high complexity. Finally, we verify the performance of our proposed mechanism through various experiments.

Localization and 3D Polygon Map Building Method with Kinect Depth Sensor for Indoor Mobile Robots (키넥트 거리센서를 이용한 실내 이동로봇의 위치인식 및 3 차원 다각평면 지도 작성)

  • Gwon, Dae-Hyeon;Kim, Byung-Kook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.9
    • /
    • pp.745-752
    • /
    • 2016
  • We suggest an efficient Simultaneous Localization and 3D Polygon Map Building (SLAM) method with Kinect depth sensor for mobile robots in indoor environments. In this method, Kinect depth data is separated into row planes so that scan line segments are on each row plane. After grouping all scan line segments from all row planes into line groups, a set of 3D Scan polygons are fitted from each line group. A map matching algorithm then figures out pairs of scan polygons and existing map polygons in 3D, and localization is performed to record correct pose of the mobile robot. For 3D map-building, each 3D map polygon is created or updated by merging each matched 3D scan polygon, which considers scan and map edges efficiently. The validity of the proposed 3D SLAM algorithm is revealed via experiments.

Relative Localization for Mobile Robot using 3D Reconstruction of Scale-Invariant Features (스케일불변 특징의 삼차원 재구성을 통한 이동 로봇의 상대위치추정)

  • Kil, Se-Kee;Lee, Jong-Shill;Ryu, Je-Goon;Lee, Eung-Hyuk;Hong, Seung-Hong;Shen, Dong-Fan
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.4
    • /
    • pp.173-180
    • /
    • 2006
  • A key component of autonomous navigation of intelligent home robot is localization and map building with recognized features from the environment. To validate this, accurate measurement of relative location between robot and features is essential. In this paper, we proposed relative localization algorithm based on 3D reconstruction of scale invariant features of two images which are captured from two parallel cameras. We captured two images from parallel cameras which are attached in front of robot and detect scale invariant features in each image using SIFT(scale invariant feature transform). Then, we performed matching for the two image's feature points and got the relative location using 3D reconstruction for the matched points. Stereo camera needs high precision of two camera's extrinsic and matching pixels in two camera image. Because we used two cameras which are different from stereo camera and scale invariant feature point and it's easy to setup the extrinsic parameter. Furthermore, 3D reconstruction does not need any other sensor. And the results can be simultaneously used by obstacle avoidance, map building and localization. We set 20cm the distance between two camera and capture the 3frames per second. The experimental results show :t6cm maximum error in the range of less than 2m and ${\pm}15cm$ maximum error in the range of between 2m and 4m.

3-D Localization of an Autonomous Underwater Vehicle Using Extended Kalman Filter (확장칼만필터를 이용한 무인잠수정의 3차원 위치평가)

  • 임종환;강철웅
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.7
    • /
    • pp.130-135
    • /
    • 2004
  • This paper presents a 3-D localization of an autonomous underwater vehicle(AUV). Conventional methods of localization, such as LBL or SBL, require additional beacon systems, which reduces the flexibility and availability of the AUV We use a digital compass, a pressure sensor, a clinometer and ultrasonic sensors for localization. From the orientation and velocity information, a priori position of the AUV is estimated based on the dead reckoning. With the aid of extended Kalman filter algorithm, a posteriori position of the AUV is estimated by using the distance between the AUV and a mother ship on the surface of the water together with the water depth information from the pressure sensor. Simulation results show the possibility of practical application of the method to autonomous navigation of the AUV.

A Study on a 3-D Localization of a AUV Based on a Mother Ship (무인모선기반 무인잠수정의 3차원 위치계측 기법에 관한 연구)

  • LIM JONG-HWAN;KANG CHUL-UNC;KIM SUNG-KYUN
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.2 s.63
    • /
    • pp.74-81
    • /
    • 2005
  • A 3-D localization method of an autonomous underwater vehicle (AUV) has been developed, which can solve the limitations oj the conventional localization, such as LBL or SBL that reduces the flexibility and availability of the AUV. The system is composed of a mother ship (small unmanned marine prober) on the surface of the water and an unmanned underwater vehicle in the water. The mother ship is equipped with a digital compass and a GPS for position information, and an extended Kalman filter is used for position estimation. For the localization of the AUV, we used only non-inertial sensors, such as a digital compass, a pressure sensor, a clinometer, and ultrasonic sensors. From the orientation and velocity information, a priori position of the AUV is estimated by applying the dead reckoning method. Based on the extended Kalman filter algorithm, a posteriori position of the AUV is, then, updated by using the distance between the AUV and a mother ship on the surface of the water, together with the depth information from the pressure sensor.

Localization of a Monocular Camera using a Feature-based Probabilistic Map (특징점 기반 확률 맵을 이용한 단일 카메라의 위치 추정방법)

  • Kim, Hyungjin;Lee, Donghwa;Oh, Taekjun;Myung, Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.4
    • /
    • pp.367-371
    • /
    • 2015
  • In this paper, a novel localization method for a monocular camera is proposed by using a feature-based probabilistic map. The localization of a camera is generally estimated from 3D-to-2D correspondences between a 3D map and an image plane through the PnP algorithm. In the computer vision communities, an accurate 3D map is generated by optimization using a large number of image dataset for camera pose estimation. In robotics communities, a camera pose is estimated by probabilistic approaches with lack of feature. Thus, it needs an extra system because the camera system cannot estimate a full state of the robot pose. Therefore, we propose an accurate localization method for a monocular camera using a probabilistic approach in the case of an insufficient image dataset without any extra system. In our system, features from a probabilistic map are projected into an image plane using linear approximation. By minimizing Mahalanobis distance between the projected features from the probabilistic map and extracted features from a query image, the accurate pose of the monocular camera is estimated from an initial pose obtained by the PnP algorithm. The proposed algorithm is demonstrated through simulations in a 3D space.

LOCALIZATION OF THE VORTICITY DIRECTION CONDITIONS FOR THE 3D SHEAR THICKENING FLUIDS

  • Yang, Jiaqi
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.6
    • /
    • pp.1481-1490
    • /
    • 2020
  • It is obtained that a localization of the vorticity direction coherence conditions for the regularity of the 3D shear thickening fluids to an arbitrarily small space-time cylinder. It implies the regularity of any geometrically constrained weak solution of the system considered independently of the type of the spatial domain or the boundary conditions.

3D Simultaneous Localization and Map Building (SLAM) using a 2D Laser Range Finder based on Vertical/Horizontal Planar Polygons (2차원 레이저 거리계를 이용한 수직/수평 다각평면 기반의 위치인식 및 3차원 지도제작)

  • Lee, Seungeun;Kim, Byung-Kook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.11
    • /
    • pp.1153-1163
    • /
    • 2014
  • An efficient 3D SLAM (Simultaneous Localization and Map Building) method is developed for urban building environments using a tilted 2D LRF (Laser Range Finder), in which a 3D map is composed of perpendicular/horizontal planar polygons. While the mobile robot is moving, from the LRF scan distance data in each scan period, line segments on the scan plane are successively extracted. We propose an "expected line segment" concept for matching: to add each of these scan line segments to the most suitable line segment group for each perpendicular/horizontal planar polygon in the 3D map. After performing 2D localization to determine the pose of the mobile robot, we construct updated perpendicular/horizontal infinite planes and then determine their boundaries to obtain the perpendicular/horizontal planar polygons which constitute our 3D map. Finally, the proposed SLAM algorithm is validated via extensive simulations and experiments.

Stereo Audio Matched with 3D Video (3D영상에 정합되는 스테레오 오디오)

  • Park, Sung-Wook;Chung, Tae-Yun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.2
    • /
    • pp.153-158
    • /
    • 2011
  • This paper presents subjective experimental results to understand how audio should be changed when a video clip is watched in 3D than 2D. This paper divided auditory perceptual information into two categories; distance and azimuth that a sound source contributes mostly, and spaciousness that scene or environment contribute mostly. According to the experiment for distance and azimuth, i.e. sound localization, we found that distance and azimuth of sound sources were magnified when heard with 3D than 2D video. This lead us to conclude 3D sound for localization should be designed to have more distance and azimuth than 2D sound. Also we found 3D sound are preferred to be played with not only 3D video clip but also 2D video clip. According to the experiment for spaciousness, we found people prefer sound with more reverberation when they watch 3D video clips than 2D video clips. This can be understood that 3D video provides more spacial information than 2D video. Those subjective experimental results can help audio engineer familiar with 2D audio to create 3D audio, and be fundamental information of future research to make 2D to 3D audio conversion system. Furthermore when designing 3D broadcasting system with limited bandwidth and with 2D TV supportive, we propose to consider transmitting stereoscopic video, audio with enhanced localization, and metadata for TV sets to generate reverberation for spaciousness.