Bull. Korean Math. Soc. 57 (2020), No. 6, pp. 1481-1490
https://doi.org/10.4134/BKMS.b200007
pISSN: 1015-8634 / eISSN: 2234-3016

LOCALIZATION OF THE VORTICITY DIRECTION
CONDITIONS FOR THE 3D SHEAR THICKENING FLUIDS

JIAQI YANG

ABSTRACT. It is obtained that a localization of the vorticity direction co-
herence conditions for the regularity of the 3D shear thickening fluids to
an arbitrarily small space-time cylinder. It implies the regularity of any
geometrically constrained weak solution of the system considered inde-
pendently of the type of the spatial domain or the boundary conditions.

1. Introduction

We focus on the local regularity of solution to a non-Newtonian incompress-
ible fluid which is governed by the following system

ur+u-Vu—dive +Vr =0, in x (0,00),
(1) div u =0, in 2 x (0, 00),
U(O,l’) ZUO(x)a in Qv

where u = (ug,u2,u3)’ denotes the unknown velocity of the fluid and 7 the
pressure, and

o = |DW)[P-2D(u), D(u) = % (Vu+ (V) T) .

We don’t impose the boundary condition since we consider the local property
of the system, the following result holds for any boundary conditions.

When p = 2, the system reduces to the classical Navier-Stokes equations. It
is well known that the Navier-Stokes equations has a global weak solution, see
[14]. A remarkable and classical sufficient condition for uniqueness and regu-
larity is the so-called Prodi-Serrin condition, which was obtained by Prodi [18]
and Serrin [19,20]. The geometric approach to study the Navier-Stokes equa-
tions was pioneered in [7]. They proved that Lipschitz regularity of sin 6(z, y, t)
can control the evolution of the enstrophy, where we denote by 6(x,y,t) the
angle between the unit vectors of direction of vorticity at locations z, and y
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at time ¢. Later, Beirdo da Veiga and Berselli [4] showed that regularity still
holds in the whole space by replacing Lipschitz continuity by %—Hélder conti-
nuity. For a more general class of conditions, see [10]. In the aforementioned
results, the geometric conditions were assumed uniformly on a time interval
and uniformly in the region of intense vorticity throughout the whole space R3.
In [11], it was shown that it is possible to localize the conditions on coherence
of the vorticity direction derived in [10]. Later, Gruji¢ [9] extended the result
to the cases when the spatial domain is not the whole space. For the cases
when the spatial domain is not the whole space, it is worth noting that Beirao
da Veiga [2,3,5] obtained a seminal interesting results under the slip or non-slip
boundary conditions.

When p # 2, it was shown that the system (1) had a global weak solution, see
[13,15] for the periodic boundary condition, and [17] for the whole space. When
D> %, Wolf [22] showed the existence of weak solutions with Dirichlet boundary
condition. When % < p < 2, the short time existence results of strong solutions
with the periodic boundary condition or in the whole space is obtained in [6,8].
When p > 2, the short time existence results of strong solutions is obtained in
[1]. When p > %, the global existence of strong solutions is shown in [13] with
the periodic boundary condition, see also [15,16]. It is natural to ask whether
the strong solution is global when 2 < p < % In [1], authors gave a Serrin’s
type regularity criteria for Vu. In [23], the author of the present paper proved
that a weak solution to the non-Newtonian incompressible fluid in the whole
space is strong if the direction of the vorticity is %—Hélder continuous with
respect to the space variables when 2 < p < % This paper aims to establish
a local result as Gruji¢ [9]. We will obtain the following result.

Theorem 1.1. Let 2 < p < % Suppose that Q0 C R3 is open and u is a weak
solution to (1) in [0,T). Fizx a point (zg,to) in Qx (0,T), and let 0 < R < 1 be
such that the open parabolic cylinder Qar(xo,t0) = B(xg,2R) x (tg — (2R)?, t0)
is contained in Q2 x (0,T).

Suppose that there exist two positive constants K, M such that the following

condition holds,
4+45p—3p2

[sinf(z,y,t)| < K|z —y| 2

for all (z,t), (y,t) in Qag N {|lw| > M}.
Then the localized enstrophy remains uniformly bounded up to t = tg, i.e.,

sup / |lw|?(z, t)dx < oo,
te(to—R?,t0) Y B(xo,R)

where w =V X u.

11-5p

Remark 1.2. In [23], we proved that if |sinf(x,y,t)] < K|z —y|~ 2z , then a
weak solution is strong. Noting that 11;5” < 4+5§;3p * for 2 < p < &, hence
Theorem 1.1 seems not to be optimal. However, we believe, this is a technical
difficulty, not an essential difficulty.
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2. Preliminary results
2.1. Some useful inequalities
Lemma 2.1 ([12] Korn inequality). Let u € W1P(R3) and p > 1. Then
IV, < D],
where the constant ¢ does not depend on u.

Lemma 2.2 ([21] Hardy-Littlewood-Sobolev theorem). Set

(@) = [ o=y )y,

andlet0<)\<n,1§p<q<oo,%:%

IIA(Plla < el fllp,

where ¢ is a positive constant depending only p, q, n.

— % Then, for p > 1, we have

2.2. Localization formula

Let ¢(x,t) = ¢(x)n(t) be a smooth cut-off function on Qo (xo,t0) satisfying
supp ¢ C B(xg,2r), ¢ =1 on B(xq,T), |Zf| < ¢ for some p € (0,1),0< ¢ <1
and supp 1) C (to — (2r)*,to], n =1 on [to — 7%, to], ['| < 5, 0 < < L.

From Section 3 of [9], one has

(2) #*(2)(w - V)u-w(x) = VST + LOT,

where

VSTjoe = —cP.V. / (@(&) x ©(©)) - Gu 1)) (x)dy

B(zg,27)
with )
0 1
(Gulz,y))r = mmwz@)
and
(0 o ' _ _
LOT = <8xiJ 8@1@) d()w;(x)w; ()
with

1 1 0
J:c/ (2V¢ - Vuj+A¢uj)dy—c/ Pwidy.
B(z0,2r) |$7y|

€kl 1A
B(zo,2r) ! |’I‘*y| 8yk

3. The proof of Theorem 1.1

Proof. In the following proof, for convenience, we set D = D(u) and D;; =

Oupt0iti - Applying the inner product V x ($2V x u) to (1), we have

/ (we+u- Vu—div(IDP2D) ) - (V x 42V x ) do = 0.
Q
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After integrating by parts, we can obtain that

1
fi/w2|w|2dx+/w2V(|D|p_2Dij) -VD;;dx

= /watw|w|2dl‘+/ (9j (|D|p_2Dij) 8kui8k¢2d$
Q Q
— / Ok (|D|p72DZ‘j) 8kui8j¢2dm +/ div (|D|p72D) . ((V¢2) X w) dx
Q Q
—/u-Vw-¢2wd$+/w-Vu-¢2wdz,
Q Q
which yields

1
7/ ¢2(x)|w\2(x,s)dz+/ V?V (|DIP72D;;) - VD;jdxdt
2 JB(xo,2r) Qs

Yop|w|?dadt + / 9; (IDP~2Dy;) OpuiOp* dacdt
Q

Q3.

f/ O (\D|p*2Dij)akuiaj¢2dx+/ div (|D[P7?D) - (V¥?) x w) dadt
Q3. Q3.

+ / u - Vw - p*wdrdt + / w - Vu - 2 wdrdt
QS,« Qgr

= T1+"'+T67

where Q3, = B(zo,2r) x (to — (2r)?, s) for a fixed s in (tg — 2r%,tp). Now, we
estimate T; (1 =1,2,...,6).

Control of T;. It is easy to see that

| gc(r)/ w2 dzdt

27

Control of Ty + T3 + T4. One has

Ty + Ty +Ty| < c/ W1+ DIP2|V D[Vl ddt
Q.

< 5/ 1/)2|D|p72|VD|2dxdt+c/ |Vu|Pdzdt .
Q3. Q

s
2r

Control of Ts. According to the calculation of (2.5) in [11], one has

|w2dzdt for any m € (1,2].

27

|T5] < em/ \u|m|ww|2dxdt+c(r)/
Q3.

2
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Notice that

1

([, ) ([, o)
<

=

C

-V u?’pdx)

Ud

B,

/ 1

(/ |¢D|3de) ’ 1+c (/B u|3pd:r) i }
(/ (¥|D|?) dx>3+c(/82r |u|33"pdx>3

<c [ V@DEPds+e [ (uf + Vul)do

2r Bar

3)

<ec w2|D|P*2|VD|2dx+c/ (Ju? + |Vul)dx
Bzr,w B2'r

where we have used Lemma 2.1. One can easily obtain that

. R %
/ |u|™ [w|* dadt S/ (/ |u\33p 2d:c) </ 7,[1w|3pd:c) dt.
Q3 to—212 Bo,. Bo,

2r

Set m =2 — %, noting that u € L>(0,T; L?(Q2)) (u is a weak solution of (1)),
by (3) one gets

/ [u|™ |ypw|? dadt
Q?

2r

s 3
c/ (/ |ww|3pdx) dt + ¢
to—2r2 B,

c w2|D|p_2\VD|2dxdt+c/ (|u? + |VulP)dzdt + c.
Q3.

IN

IN

Hence

|T5| < c/ »?|D|P72|VD|*dxdt + c/ (Ju|? + |Vu|P)dzdt
Q3. @3

2r

+C(T)/ |lw|?dzdt + c.

27

Control of Ty. First, one has

/ w - Vu - Yp?wdzdt| +
Q3. N{lw|<M}

=T4+T¢.

Ts <

/ w - Vu - Y?wdzdt
Q5,.N{lw|>M}
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It is easy to get that
T < c/ |VulPdzdt + c.

r

For T¥, one can deduce from (2) that

T / = T D el o Ol o )l o
o (xo,2r
+ the lower order terms = I + I or,

. By Holder’s inequality and Lemma 2.2, one has

_ 2
where \ = %

Is/ o) o oy 0 (8) | ) () o (g 2
t

0—27‘2

to
S/ [w ()| za ®s) [[Yw )] Lo @s)l|w ()| Lo (B (20,20 d
t

0—2r2
where
NS U D B
B8 p T a a3
which gives
Lililogg 2
a B p 3

Choosing 601, 6 be the two parameters such that
1—91+91_1 1—6; 6, 1

2 3p a’ 2 3p B

which gives

wl>

1
91+92=1p
27 3p

=

By interpolating, one can get

to
T [ IO 0 50O by Ot
to—2r

9. _p to p(61+602) P

—_0,— p—1

S sup 1w OIT2 (Bwe,2ry) (/t - ||¢“”L3P(B(x0,2r))dt) [wll e (@a,)-
0—=&T

te(to—(2r)2,t0)

4+5;073p2

b, one has 01 + 03 = p — 1 (hence one can choose 01 = 0 =

Since A =
2-1), then

to P
1< s e ([ 0B ®) | el
to—2r

te(to—(2r)2,t0)

2
1 to P
< c|lwllLr(@sn) <2 . sup H¢w(t)||i2(3(m,2,,,)> + (/t R ||1/)w||iap(3(zg,2r)>dt> )

(to—(27)2,t0) 0—2r
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IN

1 to
C”W”LP(QZT) <2 sup ) H¢w(t)”%2(B(zg,2r)) +/t - ||1/1w|\1£3,,(3<x0’2r))dt + C)
0— 4T

t€(to—(2r)%,to

A

1 _
> C”W”LP(QZT) (2 sup )H¢W(t)||i2(3(z[,,2r)) +/B ¥?DJP 2|VD2d-T>
2r

te(to—(2r)2,to

+C||w||Lp(Q2T>/ (lul” + [VulP)dx + c||wl| Lr(@ar)

2r
where we have used the estimate (3). On the other hand, as the calculations
of pages 868-869 in [9], one can get
to

Dor < c / V()L (5o 1O oo dt
to—(2r)? L

37PX (B(wo,2))

+e(r [[VullLr@,,))

to
+ C(T)/t oy IVu(®)[| L2 (B(zo,2r) |W () L2 (B (20,20 VW ()] L2 (B (20,2 A

2
where \ = 322=3P"  Note that

2p
Vu(t)||Le(B(zg.2r w(t p dt
/to—(2r)2 H ( )HL (Blzo,2 ))”d) ( )”L:”—f;ﬁ(B(xo,Qr))
to
3— 1
< c/ (202 ||vu(t)||LP(B(mo’2r))wa(t)llme(mo,gr))||¢W(t)‘|1[7,3p(5(w072,~))dt
to—(2r
< cllv s 7 2|D|P~2|VD*d
< dlVuller@an |5 sup  (owOlZa(B.2m) + Y |DIPTE VD[ dz
te(to—(27)2,t0) B,
+c|\wHLp(Q2T)/ (af? + [ValP)dz + e Vull oo,y
and
to
/ oy IVu(®)| L2 (B(zo,2r) lw (O L2 (B (20,20 [YW (D) L2 (B (20,2r)) A
to* T
to
< C/ oy VUl Lo (B(xo,20) lw ()| Lo (B2, 20 VW () || L2 (B (20 ,20)) A
to— T
<e sup oW 2B w02 + lVuUllTo (0, -

te(to—(2r)2,to0)
Thus, one obtains

1 _
Lor < el Vullrqs) <2t sup (60Ol iy + [ 9IDP 2|VD|2dz>
2r

e(to—(2r)2,t0)

@ +elVulliigu [ (6P +TuP)ds + el Vel

27

+e osup YW1 (Biao.2)) + VUl Lo, -
te(to—(27)2,to) ” ( )||L2(B( 0,27)) ( )H HL (Q2r)
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Collecting the estimates on T; (¢ = 1,...,6) and (4), letting € be sufficiently
small, one can get

1

(5) */ ¢2($)IWI2($aS)d:’5+/ WV (ID|P~*Dij) - VDijddt
2 B(z0,27) Q3.

< c(r) /Q

1 _
FeliVulirion) (5, b 6O+ [, 0PI DR)

te(to—(2r)2,to

|w|2dadt + c/ (|ul? + |Vu|?)dzdt
;T‘ g"‘

+dl[VullLr (@, / (lul? + [VulP)d + c(r, [Vu] Lr(@a)-

2r

Since u is a weak solution of system (1), i.e.,
u € L>®(0,T; L*(Q)) N L*(0, T; WP (Q)),

as the argument in [9], one can obtain

/ P (@) wP(@,s)de + | ¢*V (IDIP2Dy;) - VD, dedt
B(zo,2r)

Q3.
(r) /Q

< e(r).

IN

|w|2dxdt + c/ (|ul? + |VulP)dzdt + c(r, | Vul| Lr(@s,,))

o 2r

Actually, one has [|[Vul1r(g,,) — 0, 7 — 0, hence there exists § > 0 such
that c||VullLr(q,,) < 1 for all p < 6. If r < 4, the third term of (5) can be
absorbed. If > ¢, one can obtain a desired bound by covering B,.(xq, tg) with
finitely many balls Bs (29, tp) and redoing the proof on each cylinder. Thus, we
complete the proof of the theorem. O
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