• 제목/요약/키워드: 3-D displacement

검색결과 1,020건 처리시간 0.027초

The Performance Improvement of a Linear CCD Sensor Using an Automatic Threshold Control Algorithm for Displacement Measurement

  • Shin, Myung-Kwan;Choi, Kyo-Soon;Park, Kyi-Hwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1417-1422
    • /
    • 2005
  • Among the sensors mainly used for displacement measurement, there are a linear CCD(Charge Coupled Device) and a PSD(Position Sensitive Detector) as a non-contact type. Their structures are different very much, which means that the signal processing of both sensors should be applied in the different ways. Most of the displacement measurement systems to get the 3-D shape profile of an object using a linear CCD are a computer-based system. It means that all of algorithms and mathematical operations are performed through a computer program to measure the displacement. However, in this paper, the developed system has microprocessor and other digital components that make the system measure the displacement of an object without a computer. The thing different from the previous system is that AVR microprocessor and FPGA(Field Programmable Gate Array) technology, and a comparator is used to play the role of an A/D(Analog to Digital) converter. Furthermore, an ATC(Automatic Threshold Control) algorithm is applied to find the highest pixel data that has the real displacement information. According to the size of the light circle incident on the surface of the CCD, the threshold value to remove the noise and useless data is changed by the operation of AVR microprocessor. The total system consists of FPGA, AVR microprocessor, and the comparator. The developed system has the improvement and shows the better performance than the system not using the ATC algorithm for displacement measurement.

  • PDF

원반던지기의 운동학적 분석 (The kinematics analysis of Discus throwing)

  • 김종인;선재복
    • 한국운동역학회지
    • /
    • 제13권2호
    • /
    • pp.29-47
    • /
    • 2003
  • This study is to analyze the kinematic variables in release motion of discuss throwing. For the matter, 5 people from the national team and collegiate discuss throwing in the year 2001 were chosen as the subjects and two S-VHS video cameras set in 60frames/sec were used for recording their motions. Coordinated raw positions data through digitizing are smoothing by butter-worth 's low-pass filtering method at a cut off frequency 6.0Hz. and the direct linear transformation(DLT) method was employed to obtain 3-D position coordinates. The conclusions were as follows; 1. The better record players showed the shorter approach time in the last support phase. 2. In the displacement CG, the better record players showed the shorter displacement in medial-lateral direction, and the longer displacement in horizontal direction. In the motion, the COG showed longer displacement vertical direction. 3. The better record players showed the faster horizontal velocity than vertical velocity in the release. 4. The better record players showed to take the posture of vertical axis in the release.

A multimodal adaptive evolution of the N1 method for assessment and design of r.c. framed structures

  • Lenza, Pietro;Ghersi, Aurelio;Marino, Edoardo M.;Pellecchia, Marcello
    • Earthquakes and Structures
    • /
    • 제12권3호
    • /
    • pp.271-284
    • /
    • 2017
  • This paper presents a multimodal adaptive nonlinear static method of analysis that, differently from the nonlinear static methods suggested in seismic codes, does not require the definition of the equivalent Single-Degree-Of-Freedom (SDOF) system to evaluate the seismic response of structures. First, the proposed method is formulated for the assessment of r.c. plane frames and then it is extended to 3D framed structures. Furthermore, the proposed nonlinear static approach is re-elaborated as a displacement-based design method that does not require the use of the behaviour factor and takes into account explicitly the plastic deformation capacity of the structure. Numerical applications to r.c. plane frames and to a 3D framed structure with inplan irregularity are carried out to illustrate the attractive features as well as the limitations of the proposed method. Furthermore, the numerical applications evidence the uncertainty about the suitability of the displacement demand prediction obtained by the nonlinear static methods commonly adopted.

3차원 미소변위센서 기반 로봇 캘리브레이션 성능 검토 (Evaluation of Robot Calibration Performance based on a Three Dimensional Small Displacement Measuring Sensor)

  • ;강희준
    • 제어로봇시스템학회논문지
    • /
    • 제20권12호
    • /
    • pp.1267-1271
    • /
    • 2014
  • There have been many autonomous robot calibration methods which form closed loop structures through the various attached sensors and mechanical fixtures. Single point calibration among them has been used for on-site calibration due to its convenience of implementation. The robot can reach a single point with infinitely many configurations so that single point calibration algorithm can be set up and easily implemented relative to the other methods. However, it is not still easy to drive the robots' sharp edge to its corresponding edge of the fixture. This is error-prone process. In this paper, we propose a 3 dimensional small displacement measuring sensor and a robot calibration algorithm based on this sensor. This method relieves the difficulty of matching two edges in the single point calibration and improves the resulting robot accuracy. Simulated study is carried out on a Hyundai HA06 robot to show the effectiveness of the proposed method over the single point calibration. And also, the resulting robot accuracy is compared with that from 3D laser tracker based calibration to show the dependency of robot accuracy on range of the workspace where the measurement data are collected.

PZT-PMN Ceramics for Large Displacement Piezoelectric Devices

  • Lim, Kee-Joe;Park, Jae-Yeol;Lee, Jong-Sub;Kang, Seong-Hwa;Kim, Hyun-Hoo
    • Transactions on Electrical and Electronic Materials
    • /
    • 제5권2호
    • /
    • pp.76-80
    • /
    • 2004
  • Piezoelectric and dielectric properties as functions of x and y mole ratio in yPb(ZrxTil-x)O$_3$(1-y)Pb(Mn$\_$1/3/Nb/2/3/)O$_3$, ceramics, PZT-PMN, are investigated for large displacement piezoelectric devices. From the experimental results, when y is 0.95 and x is 0.505, the piezoelectric and dielectric properties are maximum, that is, electromechanical coupling coefficient(kp), piezoelectric strain constant(d$\_$33/), permittivity($\varepsilon$$\_$33/$\^$T//$\varepsilon$$\_$0/), and Curie temperature are 58 %, 272 pC/N, 1520 and about 350$^{\circ}C$, respectively. Also, when y is 0.90 and x is 0.50, their properties are 56 %, 242 pC/N, 1220, and 290$^{\circ}C$, respectively. As MgO dopant is added from 0 wt% to 1 wt%, kp increases to 63 % and Qm decreases to 500 at the MgO dopant of 0.1 wt%, and then kp decreases to 57 % as MgO is added.

건축물 해체공사 안전 모니터링을 위한 3차원 자동변위계측 시스템 활용 방안 연구 (A Study on Applying 3D Automatic Displacement Measurement System for Safety Monitoring of Building Demolition Works)

  • 박한빈;한혜림;김태훈;조규만;조창근;김형기
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2022년도 가을 학술논문 발표대회
    • /
    • pp.229-230
    • /
    • 2022
  • According to the national building status, there are a total of 2.89 million buildings that are over 30 years old after completion, and the number is increasing by more than 70,000 to 80,000 buildings every year. As a result, the demand for demolition works is also increasing, and more than 3 to 4 collapse accidents occur steadily every year during demolition work. Major causes of accidents include non-compliance with plans, negligence of on-site supervisors, and failure to secure structural safety. Due to the strengthening of the Severe Disaster Punishment Act, there is growing interest in the demand for secure management of collapse detection during demolition works. Therefore, this study aims to investigate the applicability of real-time safety monitoring systems using a total station capable of 3D automatic displacement measurement in building demolition work for securing structural safety by the load changes during the demolition process.

  • PDF

2차원 관내 유동에서 불활성 기체 제거과정의 직접 수치 해석 (DIRECT NUMERICAL SIMULATION OF IMMISCIBLE GAS BUBBLE DISPLACEMENT IN 2D CHANNEL)

  • 신승원
    • 한국전산유체공학회지
    • /
    • 제12권3호
    • /
    • pp.41-46
    • /
    • 2007
  • Dynamic behavior of immiscible gas bubble attached to the wall in channel flow plays very important role in many engineering applications. Special attention has been paid to micro direct methanol fuel cell(${\mu}$DMFC) where surface tension becomes dominant factor with minor gravitational effect due to its reduced size. Therefore, displacement of $CO_2$ bubble generating on a cathode side in ${\mu}$DMFC can be very difficult and efficient removal of $CO_2$ bubbles will affect the overall machine performance considerably. We have focused our efforts on studying the dynamic behavior of immiscible bubble attached to the one side of the wall on 2D rectangular channel subject to external shear flow. We used Level Contour Reconstruction Method(LCRM) which is the simplified version of front tracking method to track the bubble interface motion. Effects of Reynolds number, Weber number, advancing/receding contact angle and property ratio on bubble detachment characteristic has been numerically identified.

레이저 변위계를 이용한 암석 절리면의 3차원 거칠기 측정기 개발 (Development of a 3D Roughness Measurement System of Rock Joint Using Laser Type Displacement Meter)

  • 배기윤;이정인
    • 터널과지하공간
    • /
    • 제12권4호
    • /
    • pp.268-276
    • /
    • 2002
  • In this study, a 3D coordinate measurement system equipped with a laser displacement meter for digitizing rock joint surface was established and the digitized data were used to calculate several roughness parameters. The parameters used in this study were micro avenge inclination $angle(i_{ave})$, average slope of joint $asperity(SL_{ ave})$, root mean square of $i-angle(i_{rms})$, standard deviation of height(SDH), standard deviation of $i-angle(SD_i)$, roughness profile $index(R_P)$, and fractal dimension(D). The relationships between the roughness parameters based on the digitzation of the surface profile were analyzed. Since the measured value varied according to the degree of reflection and the variation of colors at the measuring point, rock joint surface was painted in white to minimize the influence of the surface conditions. The comparison of the measured values and roughness parameters before and after painting revealed the better consequence from measurement on the painted surfaces. Also, effect of measuring interval was studied. As measured interval was increased, roughness parameters were exponentially decreased. The incremental sequence of degree of decrease was $SDH\; i_{ave},\; i_{rms},\; SD_i,\;and\; R_ p-1$. As a result of comparison of parameters from pin-type measurement system and laser type measurement system, all value of parameters were higher when laser-type measurement system was used, except SDH.

자기베어링용 로우터의 형상 오차에 대한 실린더형 캐패시턴스 센서의 측정특성에 관한 연구 (A Study on the Measurement Characteristics of Cylindrical Type Capacitive Transducers to the Roundness Errors of Rotor for Magnetic Bearing)

  • Lee, S.H.;Jung, S.C.;Han, D.C.
    • 한국정밀공학회지
    • /
    • 제12권3호
    • /
    • pp.23-31
    • /
    • 1995
  • The sending characteristics of the non-contact type displacement transducers can affect the performances of the magnetic bearing systems when they support the rotating shaft. The probe type displacement sensor detects not only the displacement of the rotor at the sensing position but also the surface irregularitis of the rotor such as surface roughnessand roundness errors. If there exist such measuring errors, the magnetic bearing can not apply proper force against the rotor displacements for the detected signal is the input to the magnetic bearing controllers. The cylindrical shape capacitive transducer can detect the rotor displacement by the integral sum of the charges which are formed between the sensor plates and rotor so that it can reduce the detecting errors induced by the surface irregularities of the rotor. By theore- tical analysis, we compared the sensing characteristics of the cylindrical shape capacitive transducers for the rotors that have some sinusoidal irregularities with that of the ideal probe type displacement transducers.

  • PDF

Design and Performance Evaluation of Retraction-Type Actuators with Displacement Amplification Mechanism Based on Thermomechanical Metamaterial

  • Cho, Yelin;Lee, Euntaek;Kim, Yongdae
    • 항공우주시스템공학회지
    • /
    • 제14권2호
    • /
    • pp.28-35
    • /
    • 2020
  • In this paper, we present a design for a retraction-type actuator (ReACT) that has the characteristics of both thermomechanical metamaterials and displacement amplification mechanisms. The ReACT consists of an actuating bar, a diamond-shaped displacement amplification (DA) structure, and a slot for loading thin-film heaters formed through the actuating bar. When power is supplied to the thin film heater, the actuating bars contacting the heater thermally expand, and the diamond-shaped DA structures retract in the longitudinal direction. The performance characteristics of the ReACT, such as temperature distribution and retracting displacement, were calculated with thermomechanical analysis methods using the finite element method (FEM). Subsequently, the ReACTs were fabricated using a polymer-based 3D printer that can easily execute complex structures, and the performance of the ReACT was evaluated through repeated tests under various temperature conditions. The results of the performance evaluation were compared with the results of the FEM analysis.