• Title/Summary/Keyword: 3-D displacement

검색결과 1,009건 처리시간 0.023초

구조물 수평변위 계측을 위한 3D Laser scanning과 MEP layout의 비교 분석 (Comparative Analysis of 3D Laser Scanning and MEP Layout for Measurement of Horizontal Displacement of Structures)

  • 심학보;석원균;박순전
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2020년도 가을 학술논문 발표대회
    • /
    • pp.183-183
    • /
    • 2020
  • MEP layout and 3D Laser scanning are widely used equipment for displacement measurement in construction site. In this study, MEP layout and 3D Laser scanning were used to measure the lateral displacement of the same structure, and then the advantages and disadvantages of each were compared and analyzed. In general, it has been shown that MEP layout can save a lot of time compared to 3D Laser scanning. And it was found that the lateral displacement measurement results measured at a distance of 15m were similar to each other.

  • PDF

2D LiDAR 센서 기반 흙막이 벽체 변위 계측 시스템의 최적 변위 분석 알고리즘 연구 (A Study of the Optimal Displacement Analysis Algorithm for Retaining Wall Displacement Measurement System Based on 2D LiDAR Sensor)

  • 김준상;이길용;유건희;김영석
    • 한국건설관리학회논문집
    • /
    • 제24권2호
    • /
    • pp.70-78
    • /
    • 2023
  • 선행연구에서는 지중경사계의 문제점인 1) 지중경사계관 설치의 어려움, 2) 단면 변위 파악의 한계성, 3) 인력 중심의 계측 방식을 해결하기 위한 2D LiDAR 센서 기반의 흙막이 벽체 변위 계측 시스템을 개발하였다. 본 연구의 목적은 선행연구에서 개발된 흙막이 벽체 변위 계측 시스템 내 탑재될 변위 분석 알고리즘을 선정하는 것이다. 변위 분석 알고리즘 선정 결과, 변위 추정 오차가 2mm인 M3C2 알고리즘이 흙막이 벽체 변위 분석 알고리즘으로 선정되었다. 본 연구 결과에서 선정된 M3C2 알고리즘이 흙막이 벽체 변위 계측 시스템에 탑재되고 수차례의 현장 실험을 통해 변위 분석 결과의 신뢰성이 담보될 경우 흙막이 벽체 변위 계측 시스템이 현행 계측관리 대비 변위 계측의 편리성 측면에서 효과적으로 흙막이 벽체의 변위를 관리할 수 있을 것으로 판단된다.

3D nonlinear mixed finite-element analysis of RC beams and plates with and without FRP reinforcement

  • Hoque, M.;Rattanawangcharoen, N.;Shah, A.H.;Desai, Y.M.
    • Computers and Concrete
    • /
    • 제4권2호
    • /
    • pp.135-156
    • /
    • 2007
  • Three 3D nonlinear finite-element models are developed to study the behavior of concrete beams and plates with and without external reinforcement by fibre-reinforced plastic (FRP). All three models are formulated based upon the 3D theory of elasticity. The stress model is modified from the element developed by Ramtekkar, et al. (2002) to incorporate material nonlinearity in the formulation. Both transverse stress and displacement components are used as nodal degrees-of-freedom to ensure the continuity of both stress and displacement components between the elements. The displacement model uses only displacement components as nodal degrees-of-freedom. The transition model has both stress and displacement components as nodal degrees-of-freedom on one surface, and only displacement components as nodal degrees-of-freedom on the opposite surface. The transition model serves as a connector between the stress and the displacement models. The developed models are validated by comparing the results of the analyses with an existing experimental result. Parametric studies of the effects of the externally reinforced FRP on the load capacity of reinforced concrete (RC) beams and concrete plates are performed to demonstrate the practicality and the efficiency of the proposed models.

중진지역 건축물의 묻힌온통기초에 작용하는 토압과 말 뚝변위에 대한 지진해석 (Seismic Analyses of Soil Pressure against Embedded Mat Foundation and Pile Displacements for a Building in Moderate Seismic Area)

  • 김용석
    • 한국지진공학회논문집
    • /
    • 제21권1호
    • /
    • pp.69-76
    • /
    • 2017
  • Seismic analyses of a pile under a large rigid basement foundation embedded in the homogeneous soil layer were performed practically by a response displacement method assuming a sinusoidal wave form. However, it is hard to take into account the characteristics of a large mat foundation and a heterogeneous soil layer with the response displacement method. The response displacement method is relevant to the 2D problems for longitudinal structures such as tunnel, underground cave structure, etc., but might not be relevant with isolated foundations for building structures. In this study, seismic pile analysis by a pseudo 3D finite element method was carried out to compare numerical results with results of the response displacement method considering 3D characteristics of a foundation-soil system which is important for the building foundation analyses. Study results show that seismic analyses results of a response displacement method are similar to those of a pseudo 3D numerical method for stiff and dense soil layers, but they are too conservative for a soft soil layer inducing large soil pressures on the foundation wall and large pile displacements due to ignored foundation rigidity and resistance.

3차원 수치해석을 통한 복합하중이 작용하는 농업용저수지의 거동 분석 (Analysis of Behavior of Agricultural Reservoir with Combined Load by 3-D Numerical Analysis)

  • 송창섭;우제근;안광국;김명환
    • 한국농공학회논문집
    • /
    • 제60권1호
    • /
    • pp.59-65
    • /
    • 2018
  • The object of this paper was to analyze combined load acting on agricultural reservoir. This study was carried out to 3-D numerical modeling for displacement characteristic and seismic acceleration characteristic. The results of study were analyzed and summarized as follow. It was found that the displacement caused by combined load acting on railway and agricultural reservoir did not reflect the effect of load and the seismic wave consistently. The ground accelerations that occur in railway and dam were amplified because 3-D numerical analysis program interprets ground as an elastic body. Actual ground shows characteristics of elasticity and plasticity, so measured values will show different tendency. As a result of analyzing displacement characteristics, it is considered to be related to stiffness. The Ofunato seismic wave, the displacement (77.1 mm) of the body satisfied the allowable displacement (220 mm), but The Hachinohe seismic wave (282.8 mm) did not. It is considered that displacement caused by combined load is affected not only by acceleration but also by characteristics of materials.

Digital evaluation of axial displacement by implant-abutment connection type: An in vitro study

  • Kim, Sung-Jun;Son, KeunBaDa;Lee, Kyu-Bok
    • The Journal of Advanced Prosthodontics
    • /
    • 제10권5호
    • /
    • pp.388-394
    • /
    • 2018
  • PURPOSE. To measure axial displacement of different implant-abutment connection types and materials during screw tightening at the recommended torque by using a contact scanner for two-dimensional (2D) and three-dimensional (3D) analyses. MATERIALS AND METHODS. Twenty models of missing mandibular left second premolars were 3D-printed and implant fixtures were placed at the same position by using a surgical guide. External and internal fixtures were used. Three implant-abutment internal connection (INT) types and one implant-abutment external connection (EXT) type were prepared. Two of the INT types used titanium abutment and zirconia abutment; the other INT type was a customized abutment, fabricated by using a computer-controlled milling machine. The EXT type used titanium abutment. Screws were tightened at $10N{\cdot}cm$, simulating hand tightening, and then at the manufacturers' recommended torque ($30N{\cdot}cm$) 10 min later. Abutments and adjacent teeth were subsequently scanned with a contact scanner for 2D and 3D analyses using a 3D inspection software. RESULTS. Significant differences were observed in axial displacement according to the type of implant-abutment connection (P<.001). Vertical displacement of abutments was greater than overall displacement, and significant differences in vertical and overall displacement were observed among the four connection types (P<.05). CONCLUSION. Displacement according to connection type and material should be considered in choosing an implant abutment. When adjusting a prosthesis, tightening the screw at the manufacturers' recommended torque is advisable, rather than the level of hand tightening.

Three-Dimensional Surface Imaging is an Effective Tool for Measuring Breast Volume: A Validation Study

  • Lee, Woo Yeon;Kim, Min Jung;Lew, Dae Hyun;Song, Seung Yong;Lee, Dong Won
    • Archives of Plastic Surgery
    • /
    • 제43권5호
    • /
    • pp.430-437
    • /
    • 2016
  • Background Accurate breast volume assessment is a prerequisite to preoperative planning, as well as intraoperative decision making in breast reconstruction surgery. The use of three-dimensional surface imaging (3D scanning) to assess breast volume has many advantages. However, before employing 3D scanning in the field, the tool's validity should be demonstrated. The purpose of this study was to confirm the validity of 3D-scanning technology for evaluating breast volume. Methods We reviewed the charts of 25 patients who underwent breast reconstruction surgery immediately after total mastectomy. Breast volumes using the Axis Three 3D scanner, water-displacement technique, and magnetic resonance imaging (MRI) were obtained bilaterally in the preoperative period. During the operation, the tissue removed during total mastectomy was weighed and the specimen volume was calculated from the weight. Then, we compared the volume obtained from 3D scanning with those obtained using the water-displacement technique, MRI, and the calculated volume of the tissue removed. Results The intraclass correlation coefficient (ICC) of breast volumes obtained from 3D scanning, as compared to the volumes obtained using the water-displacement technique and specimen weight, demonstrated excellent reliability. The ICC of breast volumes obtained using 3D scanning, as compared to those obtained by MRI, demonstrated substantial reliability. Passing-Bablok regression showed agreement between 3D scanning and the water-displacement technique, and showed a linear association of 3D scanning with MRI and specimen volume, respectively. Conclusions When compared with the classical water-displacement technique and MRI-based volumetry, 3D scanning showed significant reliability and a linear association with the other two methods.

디지털 영상을 이용한 터널 3차원 변위 계측 (Measurement of Tunnel 3-D Displacement using Digital Photogrammetry)

  • 김광염;김창용;이승도;서용석;이정인
    • 지질공학
    • /
    • 제17권4호
    • /
    • pp.567-576
    • /
    • 2007
  • 디지털 영상을 통한 터널 내공의 3차원 절대변위 계측의 현장 적용성 검토를 위해 OO터널 현장에 계획된 내공변위 계측단면 상에 위치한 광파 타겟의 변위를 측정하고자 하였다. 디지털 영상 계측을 위한 3차원 입체모델 생성을 위해 측정위치마다 3개의 측선까지의 타겟만 고려하였다. 하나의 입체모델의 생성을 위해서 각 위치에서 3장 이상의 디지털 영상을 획득하여 입체모델을 구성하였으며, 마지막 2개 측선에서의 6개 타겟(천단, 좌우 측벽)을 계속 중첩시켜가며 다음 입체 모델을 구성하여 6개 이상의 정합점이 두 입체모델에서 공유될 수 있도록 하였다. 광파 계측과 디지털 영상계측을 통한 터널 시공 중 암반의 3차원 절대변위 계측 방법을 비교하기 위해 10회에 걸쳐 디지털 영상 계측과 광파 계측을 동일한 구간에 동시에 적용하였다. 각 방법을 사용한 계측에 소요되는 시간과 계측결과를 비교하였다.

터널 시공 중 3차원 절대변위 계측시스템의 개발과 적용 (Development of 3D absolute displacement monitoring system and its application at the stage of tunnel construction)

  • 방준호;김기영;정용훈
    • 한국터널지하공간학회 논문집
    • /
    • 제9권3호
    • /
    • pp.229-240
    • /
    • 2007
  • 터널 및 지하공간 시공 중 일상계측에서의 계측관리 효율성 및 고급의 내공변위 분석을 위해 3차원 광파기, 선단앵커정착형 타겟부착장치, 절대변위 계측관리 프로그램으로 구성된 3차원 절대변위 계측시스템을 구축하였다. 본 연구를 통해 3차원 절대변위 계측에 필요한 광파기의 종류와 사양을 제시하였고, 기존 타겟부착장치의 문제점을 개선한 선단앵커정착형 타겟부착장치에 대한 성능시험을 수행하여 우수한 시준거리와 측정정밀도를 확인하였다. 또한 절대변위 계측관리 프로그램에 대한 현장성능시험을 수행하여 얻어진 경향선/영향선 등 다양한 분석방법을 활용하여 막장전방의 연약대 존재 예측이 가능하였고, TSP탐사결과와 비교하여 정확성을 확인하였다.

  • PDF

3차원 이동물체의 변위평가를 위한 스테레오 비젼시스템 설계에 관한 연구 (A Study on the Stereo Vision System Design for the Displacement Estimation of Three-Dimensional Moving Object)

  • 이주신
    • 한국통신학회논문지
    • /
    • 제15권12호
    • /
    • pp.1002-1016
    • /
    • 1990
  • 본 논문은 스테레오비젼 시스템을 설계 제작하고, 제작된 시스템을 가지고 3차원 이동물체의 변위평가 방법을 제안하였다. 이동물체의 추출은 차영상 알고리즘에 의해 추출하고, 3차원 이동물체의 기하학적인 위치좌표는 2개의 2차원 물체의 면적중심을 합성시켜 구하였다. 3차원 이동물체의 범위평가는 합성된 3차원 좌표값에 의해서 물체의 이동속도 및 거리, 이동궤적, 카메라와 물체 사이의 공간거리를 산출하여 입증하였다.

  • PDF