• Title/Summary/Keyword: 3-D crack analysis

Search Result 230, Processing Time 0.026 seconds

Advances in Simulation of Arbitrary 3D Crack Growth using FRANC3Dv5

  • Wawrzynek, P.A.;Carter, B.J.;Hwang, Chang-Yu;Ingraffea, A.R.
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.6
    • /
    • pp.607-613
    • /
    • 2010
  • FRANC3D is a program for simulating arbitrary three-dimensional crack growth. Recently, a completely new version of the program, FRANC3D/NG, has been created. Unlike previous versions, which relied largely on boundary element analysis, the new version of the program works with finite element analysis exclusively and is designed to work with general-purpose commercial finite element packages. This paper presents the theoretical underpinnings of the procedures to adaptively modify the geometry and mesh of a model to simulate crack growth.

Analysis and Propagation Behavior of Dissimilar Friction Welded Materials for Fatigue Crack in around Interface (이종마찰압접 계면근방에서의 피로균열의 전파거동 및 해석)

  • 오환섭
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.140-145
    • /
    • 1998
  • In this study, analysis for fatigue crack propagation behavior of interface and aroud interface under rotary bending stress. Though K values are nearly the same in around interface by BEM 2-D, fatigue crack propagated H.A.Z. Around Interface crack propagation speed is m=0.678 in H.A.Z by Paris' law. In this case(friction welded materials: STS304, SM15C), fatigue crack growth is considered SM15C metal microstructure and elastic flow from this result. Result is more metal microstructute dependence than stress dependence by analysis (BEM 3-D, BEM 2-D) and fatigue crack propagation

  • PDF

Assessment of Fatigue Life of Out-Of-Plane Gusset Welded Joints using 3D Crack Propagation Analysis (3차원 피로균열 진전해석을 통한 면외거셋 용접이음의 피로수명 평가)

  • Jeong, Young-Soo;Kainuma, Shigenobu;Ahn, Jin-Hee;Lee, Wong-Hong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.129-136
    • /
    • 2018
  • The estimation of the fatigue design life for large welded structures is usually performed using the liner cumulative damage method such as Palmgren-Miner rule or the equivalent damage method. When a fatigue crack is detected in a welded steel structure, the residual service life has to be estimated base on S-N curve method and liner elastic fracture mechanics. In this study, to examine the 3D fatigue crack behavior and estimate the fatigue life of out-of-plane gusset fillet welded joint, the fatigue tests were carried out on the model specimens. Investigations of three-dimensional fatigue crack propagation on gusset welded joint was used the finite element analysis of FEMAP with NX NASTRAN and FRANC3D. Fatigue crack growth analysis was carried out to demonstrate the effects of aspect ratio, initial crack length and stress ratio on out-of-plane gusset welded joints. In addition, the crack behaviors of fatigue tests were compared with those of the 3D crack propagation analysis in terms of changes in crack length and aspect ratio. From this analysis result, SIFs behaviors and crack propagation rate of gusset welded joint were shown to be similar fatigue test results and the fatigue life can also be predicted.

Effect of the thickness on the mixed mode crack front fields

  • Khan, Shafique M.A.
    • Structural Engineering and Mechanics
    • /
    • v.42 no.5
    • /
    • pp.701-713
    • /
    • 2012
  • Results pertaining to 3D investigations on the effect of the thickness on the stress fields at the crack front are presented. A 3D finite element analysis is performed using a modified single edge-notched tension specimen configuration, with an inclined crack to include mixed mode I-II. A technique to mesh the crack front (3D) with singular finite elements in ANSYS without using third party software is introduced and used in this study. The effect of the specimen thickness is explicitly investigated for six thicknesses ranging from 1 to 32 mm. In addition, three crack inclination angles, including pure Mode-I, are used to study the effect of mixed-mode I-II fracture. An attempt is made to correlate the extent of a particular stress state along the crack front to thickness. In addition, ${\sigma}_{zz}/{\nu}({\sigma}_{xx}+{\sigma}_{yy})$ contours at the crack front are presented as a useful means to analyze the stress state.

Accuracy Improvement of Analysis Results Obtained from Numerical Analysis Model of Continuously Reinforced Concrete Pavement (연속철근 콘크리트 포장 수치해석 모델의 해석결과 정확도 개선 방법)

  • Cho, Young Kyo;Seok, Jong Hwan;Choi, Lyn;Kim, Seong-Min
    • International Journal of Highway Engineering
    • /
    • v.18 no.1
    • /
    • pp.73-83
    • /
    • 2016
  • PURPOSES : The purpose of this study is to develop a method for improving the accuracy of analysis results obtained from a two-dimensional (2-D) numerical analysis model of continuously reinforced concrete pavement (CRCP). METHODS : The analysis results from the 2-D numerical model of CRCP are compared with those from more rigorous three-dimensional (3-D) models of CRCP, and the relationships between the results are recognized. In addition, the numerical analysis results are compared with the results obtained from field experiments. By performing these comparisons, the calibration factors used for the 2-D CRCP model are determined. RESULTS : The results from the comparisons between 2-D and 3-D CRCP analyses show that with the 2-D CRCP model, concrete stresses can be overestimated significantly, and crack widths can either be underestimated or overestimated by a slight margin depending on the assumption of plane stress or plane strain. The behaviors of crack width in field measurements are comparable to those obtained from the numerical model of CRCP. CONCLUSIONS : The accuracy of analysis results from the 2-D CRCP model can be improved significantly by applying calibration factors obtained from comparisons with 3-D analyses and field experiments.

Study on the Fatigue Crack Initiation Life under 3-Dimensional Rough Contact (3차원 거친 접촉하에서의 피로균열 시작수명에 관한 연구)

  • 이문주;구영필;조용주
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.72-79
    • /
    • 2000
  • In case of rough contact fatigue, the accurate calculation of surface tractions is essential to the prediction of crack initiation life. Accurate Surface tractions influencing shear stress amplitude can be obtained by contact analysis based on tile morphology of contact surfaces. In this study, to simulate rough contact under sliding condition, gaussian rough surface generated numerically in the previous study was used and to calculate crack initiation life in the substrate, dislocation pileup theory was used.

  • PDF

Application of a 3-D crack analysis model to RC cantilever decks of excessive cracking

  • Shi, Zihai;Nakano, Masaaki
    • Structural Engineering and Mechanics
    • /
    • v.12 no.4
    • /
    • pp.377-396
    • /
    • 2001
  • The excessive cracking of RC cantilever decks, which often requires special attention for structural engineers, is studied using a three-dimensional crack analysis model. The model is based on a fracture energy approach for analyzing cracks in concrete, and the numerical analysis is carried out using a modified load control method. The problem of excessive cracking is then studied with four different span-ratios. Based on the numerical results, the crack behavior with respect to the patterns of crack propagation, dissipation of the fracture energy, and effects on the structural integrity are discussed. The mechanisms which cause the excessive cracking are also explained.

3D Analysis of Crack Growth in Metal Using Tension Tests and XFEM (인장 실험과 XFEM을 이용한 금속 균열 성장의 3 차원적 분석)

  • Lee, Sunghyun;Jeon, Insu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.4
    • /
    • pp.409-417
    • /
    • 2014
  • To prevent the occurrence of fractures in metal structures, it is very important to evaluate the 3D crack growth process in those structures and any related parts. In this study, tension tests and two simulations, namely, Simulation-I and Simulation-II, were performed using XFEM to evaluate crack growth in three dimensions. In the tension test, Mode I crack growth was observed for a notched metal specimen. In Simulation-I, a 3D reconstructed model of the specimen was created using CT images of the specimen. Using this model, an FE model was constructed, and crack growth was simulated using XFEM. In Simulation-II, an ideal notch FE model of the same geometric size as the actual specimen was created and then used for simulation. Obtained crack growth simulation results were then compared. Crack growth in the metal specimen was evaluated in three dimensions. It was shown that modeling the real shape of a structure with a crack may be essential for accurately evaluating 3D crack growth.

Field Test and Analysis of Joint Depths and Timing Contraction Joint Sawing for Concrete Pavement (콘크리트포장의 줄눈깊이 및 절단시기에 관한 유도균열 거동특성 연구)

  • 홍승호;양성철;엄주용
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.469-474
    • /
    • 1999
  • The object of study is analysis to joint crack behavior of cracked joint concrete pavement. In the new constructing concrete pavement, joint crack behavior was compared general joint depth D/4 with joint depth D/3 and D/5 that it's environmental effects changed temperature and humidity. After joint saw cutting joint section was predicted crack at joint depth D/5 test section from the result for monitoring development of crack. In the setting of data logger system of the joint section, it's data compared see with the naked eye. In the research, development of crack at the joint section should effect to joint saw timing latter than joint depth. This performance could be the minimum of deterioration to the early curing. In this research, At new constructing of joint concrete pavement of highway, the monitoring system be setting after finished paving and joint sawing. The system and see with the naked eye could be analysis to pavement behaviors from collecting data at the test section. This system could be monitoring shot term and long term. In this report, joint section of crack behavior analysis used to collected data during a month after paving and joint sawing.

  • PDF