DOI QR코드

DOI QR Code

3D Analysis of Crack Growth in Metal Using Tension Tests and XFEM

인장 실험과 XFEM을 이용한 금속 균열 성장의 3 차원적 분석

  • Lee, Sunghyun (School of Mechanical Engineering, Chonnam Nat'l Univ.) ;
  • Jeon, Insu (School of Mechanical Engineering, Chonnam Nat'l Univ.)
  • Received : 2014.01.16
  • Accepted : 2014.02.11
  • Published : 2014.04.01

Abstract

To prevent the occurrence of fractures in metal structures, it is very important to evaluate the 3D crack growth process in those structures and any related parts. In this study, tension tests and two simulations, namely, Simulation-I and Simulation-II, were performed using XFEM to evaluate crack growth in three dimensions. In the tension test, Mode I crack growth was observed for a notched metal specimen. In Simulation-I, a 3D reconstructed model of the specimen was created using CT images of the specimen. Using this model, an FE model was constructed, and crack growth was simulated using XFEM. In Simulation-II, an ideal notch FE model of the same geometric size as the actual specimen was created and then used for simulation. Obtained crack growth simulation results were then compared. Crack growth in the metal specimen was evaluated in three dimensions. It was shown that modeling the real shape of a structure with a crack may be essential for accurately evaluating 3D crack growth.

구조물의 파괴는 주로 제조 과정에서 생긴 결함이나 사용 중 국부적인 손상의 원인으로 발생되는 균열에 의해 나타난다. 따라서 구조물이나 관련된 부품들의 균열 성장 과정을 분석하는 것은 구조물의 안정성 확보를 위하여 매우 중요하다. 본 논문에서는 균열의 성장을 분석하기 위해 노치가 있는 시편을 인장 실험하며, 마이크로 포커스 X-선 단층촬영을 이용하여 균열 성장을 관찰하였고, 노치가 있는 시편의 단층촬영의 영상으로부터 3 차원 재구축하여 만든 유한요소 모델과 이상적인 모양의 노치를 만든 유한요소 모델을 XFEM에 적용하여 3 차원 균열 성장의 시뮬레이션을 실시 하였다. 실제 시편의 인장 실험 결과와 시뮬레이션 실험들의 결과를 비교하였고, 보다 정밀한 3 차원적 균열 성장의 분석을 위해서는 실제적인 구조물 및 균열의 형태에 대한 3 차원 모델링이 반드시 실시되어야 함을 확인하였다.

Keywords

References

  1. Vavrik, D., 2012, "Crack Behavior in Ductile Thin Wall Materials," Technology for Next Generation Vehicle, Vol. 15, pp. 27-33.
  2. Chu, S. J. and Liu, C., 2012, "Finite Element Simulation of Fatigue Crack Growth: Determination of Exponent m in Paris Law," Trans. Korean Soc. Mech. Eng. A, Vol. 36, No. 7, pp. 713-721. https://doi.org/10.3795/KSME-A.2012.36.7.713
  3. Sander, M. and Richard, H. A., 2005, "Finite Element Analysis of Fatigue Crack Growth with Interspersed Mode I and Mixed Mode Overloads," International Journal of Fatigue, Vol. 27, No. 8, pp. 905-913. https://doi.org/10.1016/j.ijfatigue.2004.10.008
  4. Moes, N., Dolbow, J. and Belytschko, T., 1999, "A Finite Element Method for Crack Growth Without Remeshing," International Journal for Numerical Methods in Engineering, Vol. 46, No. 1, pp. 131-150. https://doi.org/10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
  5. AlloysKeswani, K., Singh, K. L. and Arokkiaswamy, A., 2012, "Computation of SIF and Crack Growth Simulation Using XFEM Techniques," International Conference on Advanced Research in Mechanical Engineering.
  6. Das, P., Singh, I. V. and Jayaganthan, R., 2012, "Crack Growth Simulation of Bulk and Ultrafine Grained 7075 Al Alloy by XFEM," International Journal of Materials & Product Technology, Vol. 44, No. 3-4, pp. 252-276. https://doi.org/10.1504/IJMPT.2012.050192
  7. Gigliotti, L., 2012, "Assessment of the Applicability of XFEM in Abaqus for Modeling Crack Growth in Rubber," Master Thesis, KTH School of Engineering Sciences.
  8. Jiang, Y., Tay, T. E., Chen, L. and Sun, X. S., 2013, "An Edge-Based Smoothed XFEM for Fracture in Composite Materials," International Journal of Fracture, Vol. 179, No. 1-2, pp. 179-199. https://doi.org/10.1007/s10704-012-9786-z
  9. LEVEN, M., 2012, "Stationary 3D Crack Analysis with Abaqus XFEM for Integrity Assessment of Subsea Equipment," Master Thesis, Chalmers University of Technology.
  10. Seabra, M. R., Sustaric, P., Cesar de Sa, J. A. and Rodic, T., 2012, "Damage Driven Crack Initiation and Propagation in Ductile Metals Using XFEM," Computational Mechanics, pp. 1-19.
  11. Ye, C., Shi, J. and Cheng, G. J., 2012, "An eXtended Finite Element Method (XFEM) Study on the Effect of Reinforcing Particles on the Crack Propagation Behavior in a Metal-Matrix Composite," International Journal of Fatigue, Vol. 44, pp. 151-156. https://doi.org/10.1016/j.ijfatigue.2012.05.004
  12. Mesh-Independent Fracture Modeling Using the Extended Finite Element Method(XFEM), http://www. simulia.com/services/training/wbtAbaqus69.
  13. ABAQUS Ver. 6.10, Abaqus/CAE User's Manual.
  14. Belytschko, T. and Black, T., 1999, "Elastic Crack Growth in Finite Elements with Minimal Remeshing," International Journal for Numerical Methods in Engineering, Vol. 45, No. 5, pp. 601-620. https://doi.org/10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
  15. ABAQUS Ver. 6.10, Abaqus Analysis User's Manual.
  16. Du, Z., "eXtended Finite Element Method (XFEM) in Abaqus," http://www.simulia.com/download/rum11/ UK/Advanced-XFEM-Analysis.pdf.
  17. Reinhardt, L. and Cordes, J., 2010, "XFEM Modeling of Mixed-Mode Cracks in Thin Aluminum Panels," 2010 Simulia Customer Conference, pp. 1-13.
  18. Kim, Y. S., 2000, "Fracture Characteristics of Aluminum Alloy Composites Reinforced with Carbide Particles," School of Metallurgical and Materials Engineering, Kookmin Univ.,, Vol. 22, pp. 43-51.
  19. http://www.matweb.com.
  20. Pourmodheji, R. and Mashayekhi, M., 2012, "Improvement of the Extended Finite Element Method for Ductile Crack Growth," Materials Science and Engineering: A, Vol. 551, pp. 255-271. https://doi.org/10.1016/j.msea.2012.05.014
  21. Sobotka, J. C., 2010, "Steady Crack Growth Through Ductile Metals: Computational Studies," Ph.D. Thesis, University of Illinois at Urbana-Champaign.

Cited by

  1. Evaluation of stress and crack behavior using the extended finite element method in the composite layer of a type III hydrogen storage vessel vol.32, pp.5, 2018, https://doi.org/10.1007/s12206-018-0407-2