• Title/Summary/Keyword: 3-D combustion model

Search Result 93, Processing Time 0.03 seconds

The Study of Model Biogas Catalyst Reforming Using 3D IR Matrix Burner (3D IR 매트릭스 버너에 의한 모사 바이오가스 촉매 개질 연구)

  • Lim, Mun Sup;Chun, Young Nam
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.12
    • /
    • pp.840-846
    • /
    • 2012
  • Global climate changes caused by $CO_2$ emissions are currently debated around the world; green sources of energy are being sought as alternatives to replace fossil fuels. The sustainable use of biogas for energy production does not contribute to $CO_2$ emission and has therefore a high potential to reduce them. Catalytic steam reforming of a model biogas ($CH_4:CO_2$ = 60%:40%) is investigated to produce $H_2$-rich synthesis gas. The biogas utilized 3D-IR matrix burner in which the surface combustion is applied. The ruthenium catalyst was used inside a reformer. Parametric screening studies were achieved as Steam/Carbon ratio, biogas component ratio, Space velocity and Reformer temperature. When the condition of Steam/Carbon ratio, $CH_4/CO_2$ ratio, Space velocity and Refomer temperature were 3.25, 60% : 40%, $14.7L/g{\cdot}hr$ and $550^{\circ}C$ respectively, the hydrogen concentration and methane conversion rate were showed maximum values. Under the condition mentioned above, $H_2$ yield, $H_2$/CO ratio, CO selectivity and energy efficiency were 0.65, 2.14, 0.59, 51.29%.

CFD Simulation Study to analyze the Dispersion and Explosion of Combustible Gas (CFD를 이용한 가연성 가스의 확산 및 폭발 Simulation)

  • Jang, Chang-Bong;Lee, Hyang-Jik;Lee, Min-Ho;Min, Dong-Chul;Back, Jong-Bae;Ko, Jae Wook;Kwon, Hyuck-Myun
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.5
    • /
    • pp.58-65
    • /
    • 2012
  • Various models are currently applied to predict the dispersion of leaked combustible gas and overpressure from a vapor cloud explosion(VCE). However, those models use simple approaches where topography and barriers of anti-leakage facilities and the effects of buildings were not sufficiently taken into considerations. For this reason, this study has proposed the dispersion process of leaked gas, distribution patterns, and flames and overpressure generated from gas explosions in 2D and 3D virtual spaces by reviewing more accurately analyzable computational fluid dynamics (CFD) model by considering various variables including combustion types of leaked substances, geometry of facility, warm currents, barriers, the influence of wind, and others. The CFD analysis results are anticipated to be usefully applied for the risk analysis of explosion and for the risk-based design.

Hydrodynamic Characteristics of Circulating Fluidized Bed in Different Mass Inventories (순환유동층에서 Solid Mass Inventory에 따른 수력학적 특성 연구)

  • Kim, E.G.;Shin, D.H.;Hwang, J.;Lee, J.;Kim, J.
    • 한국연소학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.165-172
    • /
    • 2002
  • This paper discusses hydrodynamic characteristics of cold circulating fluidized bed(CFB) in different solid mass inventories. Operating parameters of solid mass inventory, primary air and J-valve fluidizing air were varied to find out the effect on the flow fludization pattern. Experimental measurements were made in a 3m tall CFB that has 0.05m riser diameter and black silica-carbonate of particle sizes from $100{\mu}m$ to $500{\mu}m$ were employed as the bed material. The operating conditions of superficial gas velocity and J-valve fluidizing velocity were in the ranges of 1.39~3.24 m/s and 0.139~0.232 m/s respectively. The axial solid fraction and solid circulation rate of CFB were observed and compared with modelling through IEA-CFBC Model and commercial CFD code.

  • PDF

A Study on the Effect of Mid Layer on Supersonic 2D Double Shear Layer (초음속 2차원 2단 혼합층에서 중간층의 역할)

  • Kim, Dongmin;Baek, Seungwook
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.1
    • /
    • pp.9-17
    • /
    • 2015
  • The basic flow configuration is composed of a plane, double shear layer where relatively thin mid gas layer is sandwiched between air and fuel stream. The present study describes numerical investigations concerning the combustion enhancement according to a variation of mid layer thickness. In this case, the effect of heat release in turbulent mixing layers is important. For the numerical solution, a fully conservative unsteady $2^{nd}$ order time accurate sub-iteration method and $2^{nd}$ order TVD scheme are used with the finite volume method including k-${\omega}$ SST model. The results consists of three categories; single shear layer consists of fuel and air, inert gas sandwiched between fuel and air, cold fuel gas sandwiched between fuel and air. The numerical calculations has been carried out in case of 1, 2, 4 mm of mid layer thickness. The height of total gas stream is 4 cm. The combustion region is broadened in case of inert gas layer of 2, 4 mm thickness and cold fuel layer of 4 mm thickness compared with single shear layer.

PILOT INJECTION OF DME FOR IGNITION OF NATURAL GAS AT DUAL FUEL ENGINE-LIKE CONDITIONS

  • MORSY M. H.;AHN D. H.;CHUNG S. H.
    • International Journal of Automotive Technology
    • /
    • v.7 no.1
    • /
    • pp.1-7
    • /
    • 2006
  • The ignition delay of a dual fuel system has been numerically investigated by adopting a constant volume chamber as a model problem simulating diesel engine relevant conditions. A detailed chemical kinetic mechanism, consisting of 28 species and 135 elementary reactions, of dimethyl ether (DME) with methane ($CH_{4}$) sub-mechanism has been used in conjunction with the multi-dimensional reactive flow KIVA-3V code to simulate the autoignition process. The start of ignition was defined as the moment when the maximum temperature in the combustion vessel reached to 1900 K with which a best agreement with existing experiment was achieved. Ignition delays of liquid DME injected into air at various high pressures and temperatures compared well with the existing experimental results in a combustion bomb. When a small quantity of liquid DME was injected into premixtures of $CH_{4}$/air, the ignition delay times of the dual fuel system are longer than that observed with DME only, especially at higher initial temperatures. The variation in the ignition delay between DME only and dual fuel case tend to be constant for lower initial temperatures. It was also found that the predicted values of the ignition delay in dual fuel operation are dependent on the concentration of the gaseous $CH_{4}$ in the chamber charge and less dependent on the injected mass of DME. Temperature and equivalence ratio contours of the combustion process showed that the ignition commonly starts in the boundary at which near stoichiometric mixtures could exists. Parametric studies are also conducted to show the effect of additive such as hydrogen peroxide in the ignition delay. Apart from accurate predictions of ignition delay, the coupling between multi-dimensional flow and multi-step chemistry is essential to reveal detailed features of the ignition process.

Temperature distribution of ceramic panels of a V94.2 gas turbine combustor under realistic operation conditions

  • Namayandeh, Mohammad Javad;Mohammadimehr, Mehdi;Mehrabi, Mojtaba
    • Advances in materials Research
    • /
    • v.8 no.2
    • /
    • pp.117-135
    • /
    • 2019
  • The lifetime of a gas turbine combustor is typically limited by the durability of its liner, the structure that encloses the high-temperature combustion products. The primary objective of the combustor thermal design process is to ensure that the liner temperatures do not exceed a maximum value set by material limits. Liner temperatures exceeding these limits hasten the onset of cracking which increase the frequency of unscheduled engine removals and cause the maintenance and repair costs of the engine to increase. Hot gas temperature prediction can be considered a preliminary step for combustor liner temperature prediction which can make a suitable view of combustion chamber conditions. In this study, the temperature distribution of ceramic panels for a V94.2 gas turbine combustor subjected to realistic operation conditions is presented using three-dimensional finite difference method. A simplified model of alumina ceramic is used to obtain the temperature distribution. The external thermal loads consist of convection and radiation heat transfers are considered that these loads are applied to flat segmented panel on hot side and forced convection cooling on the other side. First the temperatures of hot and cold sides of ceramic are calculated. Then, the thermal boundary conditions of all other ceramic sides are estimated by the field observations. Finally, the temperature distributions of ceramic panels for a V94.2 gas turbine combustor are computed by MATLAB software. The results show that the gas emissivity for diffusion mode is more than premix therefore the radiation heat flux and temperature will be more. The results of this work are validated by ANSYS and ABAQUS softwares. It is showed that there is a good agreement between all results.

ISO 9705 Room-Corner Test & Model simulations (ISO 9705 Room-Corner Test와 모델 평가)

  • ;S.E. Dillom;J,G Quintiere
    • Fire Science and Engineering
    • /
    • v.13 no.2
    • /
    • pp.3-11
    • /
    • 1999
  • New examination of a predictive model for the ISO 9705 room-corner test have been m made for materials studied by L S Fire Laboratories, Italy. The ISO 9705 test subjects wall a and ceiling mounted materials to a comer ignition source of 100 kW for a duration of 10 m minutes; if flashover does not occur this is followed by 300 kW for another 10 minutes. The m materials that did not stay in place during combustion because of melting, dripping, or d distorting were simulated by an adjustment to the material's total available energy. For m mat려als that remain in place the simulation model appears to do well in its prl어ictions. A l large-s떠Ie room test results 뾰 compar벼 with the m여el’s prediction also.

  • PDF

NUMERICAL STUDY OF THREE-DIMENSIONAL DETONATION WAVES USING PARALLEL PROCESSING (병렬 처리를 이용한 3차원 테토네이션 파 수치해석)

  • Cho, D.R.;Choi, J.Y.
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.15-19
    • /
    • 2005
  • Three-dimensional structures of unsteady detonation wave propagating through a square-shaped tube is studied using computational method and parallel processing. Inviscid fluid dynamics equations coupled with variable-${\gamma}$ formulation and simplified one-step Arrhenius chemical reaction model were analysed by a MUSCL-type TVD scheme and four stage Runge-Kutta time integration. Results in three dimension show the two unsteady detonation wave propagating mode, the Rectangular and diagonal mode of detonation wave instabilities. Two different modes of instability showed the same cell length but different cell width and the geometric similarities in smoked-foil record.

  • PDF

Analysis of Flow Characteristics in the Intake System of 6-Cylinder MPI CNG Engine

  • Ha, Seung-Hyun;Kim, Ho-Young;Chung, Jin-Taek
    • 한국연소학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.215-222
    • /
    • 2002
  • It has been well acknowledged that intake system plays great role in the performance of reciprocating engine. Well-designed intake system is expected to not only increase engine efficiency but also decrease engine emission, which is one of the most urgent issues in the automotive society. Thorough understanding of the flow in intake system helps great to design adequate intake system. Even though both experimental and numerical methods are used to study intake flow, numerical analysis is more widely used due to its merits in time and economy. Intake system of In-line 6-Cylinder CNG engine was chosen for the analysis ICEM CFD HEXA was used to create 3-D structured grid and FIRE code was used for the flow analysis in the intake system. Due to the complexity of the geometry standard ${\kappa}-{\varepsilon}$ turbulence model was applied. Numerical analysis was performed for various inlet and outlet boundary conditions under both steady and transient flow. Inlet mass flow rate and outlet pressure variation were changing parameters with respect to engine speed. Flow parameters, such as velocity, pressure and flow distribution, were evaluated to provide adequate data of this intake system.

  • PDF

Development of Noise Prediction Program for HRSG (HRSG 소음예측 프로그램 개발)

  • Cheong, Cheol-Ung;Ryu, Jae-Wook;Nam, Kyoung-Hun;Lee, Byeong-Eun;Lee, Soo-Gab
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.389-395
    • /
    • 2000
  • It is usually the contractual responsibility of HRSG(Heat Recovery Steam Generator) supplier to limit combustion turbine exhaust noise at cogeneration sites. Thus, it is necessary to predict the noise level from HRSG at the stage of preliminary design. HRSG is usually composed of inlet duct, main casing, outlet duct, stack. To satisfy the noise limit level, additional equipments are sometimes required - duct shroud, silencer. We develop algorithms for predicting the noise emission from all these equipments of HRSG units. For the convenience of user, we develop the GUI window version program, named NP-HRSG program. To evaluate the accuracy of this program, predicted noise levels from a real HRSG model are compared with measured data. Through this comparison, we observe that the maximum error is just about 3dB.

  • PDF