• Title/Summary/Keyword: 3-D artifact

Search Result 102, Processing Time 0.023 seconds

Motion Artifact Reduction Algorithm for Interleaved MRI using Fully Data Adaptive Moving Least Squares Approximation Algorithm (완전 데이터 적응형 MLS 근사 알고리즘을 이용한 Interleaved MRI의 움직임 보정 알고리즘)

  • Nam, Haewon
    • Journal of Biomedical Engineering Research
    • /
    • v.41 no.1
    • /
    • pp.28-34
    • /
    • 2020
  • In this paper, we introduce motion artifact reduction algorithm for interleaved MRI using an advanced 3D approximation algorithm. The motion artifact framework of this paper is data corrected by post-processing with a new 3-D approximation algorithm which uses data structure for each voxel. In this study, we simulate and evaluate our algorithm using Shepp-Logan phantom and T1-MRI template for both scattered dataset and uniform dataset. We generated motion artifact using random generated motion parameters for the interleaved MRI. In simulation, we use image coregistration by SPM12 (https://www.fil.ion.ucl.ac.uk/spm/) to estimate the motion parameters. The motion artifact correction is done with using full dataset with estimated motion parameters, as well as use only one half of the full data which is the case when the half volume is corrupted by severe movement. We evaluate using numerical metrics and visualize error images.

Consideration of the Effect of Artifact during the Image Guided Radiation Therapy Using the Fiducial Marker (영상 유도 방사선치료 시 Fiducial Marker의 Artifact에 관한 연구)

  • Kim, Jong-Min;Kim, Dae-Sup;Back, Geum-Mun;Kang, Tae-Yeong;Hong, Dong-Ki;Yun, Hwa-Yong;Kwon, Kyeong-Tae
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.22 no.1
    • /
    • pp.1-10
    • /
    • 2010
  • Purpose: The effect of artifact was analyzed, which occurs from fiducial marker during the liver Image Guided Radiation Therapy (IGRT) using the fiducial marker. Materials and Methods: The size of artifact of fixed fiducial marker and length of mobile fiducial marker locus were measured using the On-Board Imager system (OBI) and CT simulator, and 2D-2D matching and 3D-3D matching were carried out, respectively, and at this time, the coordinates transition value of couch was analyzed. Results: The measurement of fixed fiducial marker artifact size indicated CT 4.90, 8.10, 12.90, 19.70 mm and OBI 5.60, 10.60, 14.70, 29.40 mm based on the reference CT slice thickness of 1.25, 2.50, 5.00, and 10.00 mm. Meanwhile, the measurement of mobile fiducial marker locus length indicated CT 42.00, 43.10, 46.50 mm, and OBI 43.40, 46.00, 49.30 mm. The coordinates transition of 1.00, 2.00, and 8.00 mm occurred between 2D-2D matching and 3D-3D matching. Conclusion: It was confirmed that the therapy error increased during IGRT due to the influence of artifact when CT slice thickness increased. Thus, it may be desirable to acquire the image less than 2.50 mm in slice thickness when IGRT is implemented using the fiducial marker.

  • PDF

A Study on the Ball-Bar Artifact for the Volumetric Error Calibration of Machine Tools (Machine Tools 공간오차 분석을 위한 Bal1-bar Artifact 연구)

  • Lee, Eung-Suk;Koo, Sang-Seo;Park, Dal-Gun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.7
    • /
    • pp.986-991
    • /
    • 2004
  • For volumetric error measurement and calibration for machine tools, manufacturing machine or coordinate measuring machine (CMM), are studied using a Ball-bar artifact. A design of the Ball-bar is suggested manufactured by Invar, which is a low thermal expansion material, and precision steel balls. The uncertainty for the artifact method is discussed. A method of the Ball-bar artifact for obtaining 3-D position errors in CMM is proposed. The method of error vector measurement is shown using the Ball-bar artifact. Finally, the volumetric error is calculated from the error vectors and it can be used for Pitch error compensation in conventional NC machine and 3-D position Error map for calibration of NC machine tools.

The feasibility of algorithm for iterative metal artifact reduction (iMAR) using customized 3D printing phantom based on the SiPM PET/CT scanner (SiPM PET/CT에서 3D 프린팅 기반 자체제작한 팬텀을 이용한 iMAR 알고리즘 유용성 평가에 관한 연구)

  • Min-Gyu Lee;Chanrok Park
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.28 no.1
    • /
    • pp.35-40
    • /
    • 2024
  • Purpose: To improve the image quality in positron emission tomography (PET), the attenuation correction technique based on the computed tomography (CT) data is important process. However, the artifact is caused by metal material during PET/CT scan, and the image quality is degraded. Therefore, the purpose of this study was to evaluate image quality according to with and without iterative metal artifact reduction (iMAR) algorithm using customized 3D printing phantom. Materials and Methods: The Hoffman and Derenzo phantoms were designed. To protect the gamma ray transmission and express the metal portion, lead substance was located to the surface. The SiPM based PET/CT was used for acquisition of PET images according to application with and without iMAR algorithm. The quantitative methods were used by signal to noise ratio (SNR), coefficient of variation (COV), and contrast to noise ratio (CNR). Results and Discussion: The results shows that the image quality applying iMAR algorithm was higher 1.15, 1.19, and 1.11 times than image quality without iMAR algorithm for SNR, COV, and CNR. Conclusion: In conclusion, the iMAR algorithm was useful for improvement of image quality by reducing the metal artifact lesion.

The Method for Removing Jagging Artifact (Jagging Artifact 억제 기법)

  • Yang Seoung-Joon;Lee In-Hwan;Kwon Young-Jin
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.3
    • /
    • pp.194-197
    • /
    • 2005
  • Digital display products are gradually becoming diversified and pursuing high-quality image display. Digital TV supports various video signal formats from conventional SD to digital HD because the format conversion of video image is required. Traditional format conversion of the video image is achieved by a 1-dimensional linear interpolator applying both horizontal and vertical direction. Jagging artifact can be expressed as the linkage of line segments in several directions. In this paper, we present the method that removes jagging artifact effectively using PCA (Principle Component Analysis) and reserve the detail in a given image.

A study on evaluation of the image with washed-out artifact after applying scatter limitation correction algorithm in PET/CT exam (PET/CT 검사에서 냉소 인공물 발생 시 산란 제한 보정 알고리즘 적용에 따른 영상 평가)

  • Ko, Hyun-Soo;Ryu, Jae-kwang
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.22 no.1
    • /
    • pp.55-66
    • /
    • 2018
  • Purpose In PET/CT exam, washed-out artifact could occur due to severe motion of the patient and high specific activity, it results in lowering not only qualitative reading but also quantitative analysis. Scatter limitation correction by GE is an algorism to correct washed-out artifact and recover the images in PET scan. The purpose of this study is to measure the threshold of specific activity which can recovers to original uptake values on the image shown with washed-out artifact from phantom experiment and to compare the quantitative analysis of the clinical patient's data before and after correction. Materials and Methods PET and CT images were acquired in having no misalignment(D0) and in 1, 2, 3, 4 cm distance of misalignment(D1, D2, D3, D4) respectively, with 20 steps of each specific activity from 20 to 20,000 kBq/ml on $^{68}Ge$ cylinder phantom. Also, we measured the distance of misalignment of foley catheter line between CT and PET images, the specific activity which makes washed-out artifact, $SUV_{mean}$ of muscle in artifact slice and $SUV_{max}$ of lesion in artifact slice and $SUV_{max}$ of the other lesion out of artifact slice before and after correction respectively from 34 patients who underwent $^{18}F-FDG$ Fusion Whole Body PET/CT exam. SPSS 21 was used to analyze the difference in the SUV between before and after scatter limitation correction by paired t-test. Results In phantom experiment, $SUV_{mean}$ of $^{68}Ge$ cylinder decreased as specific activity of $^{18}F$ increased. $SUV_{mean}$ more and more decreased as the distance of misalignment between CT and PET more increased. On the other hand, the effect of correction increased as the distance more increased. From phantom experiments, there was no washed-out artifact below 50 kBq/ml and $SUV_{mean}$ was same from origin. On D0 and D1, $SUV_{mean}$ recovered to origin(0.95) below 120 kBq/ml when applying scatter limitation correction. On D2 and D3, $SUV_{mean}$ recovered to origin below 100 kBq/ml. On D4, $SUV_{mean}$ recovered to origin below 80 kBq/ml. From 34 clinical patient's data, the average distance of misalignment was 2.02 cm and the average specific activity which makes washed-out artifact was 490.15 kBq/ml. The average $SUV_{mean}$ of muscles and the average $SUV_{max}$ of lesions in artifact slice before and after the correction show a significant difference according to a paired t-test respectively(t=-13.805, p=0.000)(t=-2.851, p=0.012), but the average $SUV_{max}$ of lesions out of artifact slice show a no significant difference (t=-1.173, p=0.250). Conclusion Scatter limitation correction algorism by GE PET/CT scanner helps to correct washed-out artifact from motion of a patient or high specific activity and to recover the PET images. When we read the image occurred with washed-out artifact by measuring the distance of misalignment between CT and PET image, specific activity after applying scatter limitation algorism, we can analyze the images more accurately without repeating scan.

Error Analysis of Free-Form Artifact using 3D Measurement Data (3차원 측정 데이터를 이용한 자유곡면 가공물의 오차해석)

  • 김성돈;이성근;양승한;이재종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.439-442
    • /
    • 2001
  • The Accuracy of a free-form artifact is affected by machine tool errors, machining process errors, environmental causes and other uncertainty. This paper deals with methodological approach about machine tool errors that are defined the relationship between CMM and OMM inspections of the free-form artifact. In order to analyze the measurement data, Reverse engineering was used. In other words, Surface of Free-Form Artifact is generated by NURBS surface approximation method. Finally, Volumetric error map is made to compare surface of CMM data with that of OMM data.

  • PDF

두 경부 종양의 C-T 영상을 이용한 방사선 치료계획시 Artifact가 선량 계산에 미치는 영향

  • 김경태;주상규
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.13 no.1
    • /
    • pp.109-112
    • /
    • 2001
  • 1. 목적 : head and neck cancer 환자의, C-T 영상을 이용한 방사선치료계획시 치과 보철물에 의해 발생하는 artifact가 선량 계산에 미치는 영향을 분석하고자 한다. 2. 재료 및 방법:두 경부와 유사한 크기의 Polystyrenes Phantom ($20{\times}20{\times}25cm^3$) 을 제작하고, 팬톰내에 금으로 인공보철물을 제작하여 보철물 부착 전.후를 C-T Scan (High Speed Advantage, GE, US) 하였다. artifact에 의한 영향을 쉽게 분석하기위해 팬톰내에 다른 구조물은 만들지 않았으며 두가지 방법으로 얻어진 영상을 이용하여 조사면의 크기와 조사 방향을 변화 시켜 가며 1문 조사(SSD 100 cm)에 의한 치료 계획(3D RTP system, Prowess, US)을 수립하여 기준점(5,10 cm depth)에서의 선량 변화를 비교 분석하였다. 아울러 3회 반복 scan하여 artifact에 발생 유형과 CTNo을 이용한 density을 분석하였다. 3. 결과: C-T Scan으로 얻어진 image 상에 나타난 Artifact는 CT no $-1000{\sim}+2775$(기준 $-1000{\sim}+3700$)까지의 다양한 값을 가지며 보철물을 기준으로 방사형태로 분포하였다. artifact가 선량 계산에 미치는 영향을 분석한 결과 보철물 사용시 5cm깊이의 기준점에서 절대선량은 평균 $+1.5{\pm}2.8\%$, 10 cm 깊이에서는 $+1.8{\pm}3.5\%$의 오차를 보였다. 조사방향에 의한 오차는 artifact에 대해 측면 조사한(gantry $270^{\circ}$)경우에서 높게 관찰되었다. 4. 결론: 두 경부 종양의 방사선 치료시 치과 보철물에 의한 artifact는 흔히 관찰가능하며 본 실험을 통해 다양한 형태와 다양한 density을 가짐을 알수있었다. 영상에 나타난 정도에 비해 선량계산에 미치는 평균 오차는 낮게 평가되었지만 조사 방향과 보철물의 위치에 따라 변동이 크게 나타날 수 있어 치료 계획시 가능한 artifact의 영향을 적게 받는 빔의 선택이 정확한 선량 계산에 도움을 줄 것으로 사료된다.

  • PDF

Noise removal or video sequences with ,3-D anisotropic diffusion equation (3차원 이방성확산 방정식을 이용한 동영상의 영상잡음제거)

  • Lee, Seok-Ho;Choe, Eun-Cheol;Gang, Mun-Gi
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.2
    • /
    • pp.79-86
    • /
    • 2002
  • Nowadays there is a trend to apply the diffusion equation to image Processing. The anisotropic diffusion equation is highly favoured as a noise removal algorithm because it can remove noise while enhancing edges. However if the two dimensional anisotropic diffusion equation is applied to the noise removal of video sequences, flickering artifact due to the luminance difference between frames and ghost artifact due to the interfiltering between frames occur. In this paper the two dimensional anisotropic diffusion equation is extended to the sequence axis. The Proposed three dimensional anisotropic diffusion equation removes noise more efficiently than the two dimensional equation, and furthermore removes the flickering and ghost artifact as well.

Volume Change of Spiral Computed Tomography due to the Changed in the Parameters (파라미터의 변경에 따라 나선형 전산화 단층 촬영의 체적 변화)

  • Lee, JunHaeng
    • Journal of the Korean Society of Radiology
    • /
    • v.7 no.4
    • /
    • pp.307-311
    • /
    • 2013
  • This study examined the change of artifact volume by analyzing the level of image change associated with the setting of threshold through 3D imaging in scan parameter(slice thickness and helical pitch) and 3D image reconstruction to explore whether the presence of pathology was fully distinguished when CT was taken by lower dose than the existent dose to reduce exposure. Furthermore, this study attempted to investigate Scan Parameter acceptable in CT to reduce exposure dose. For materials and methods, silicon was used to produce samples. Five spherical samples were produced at 10-millimeter intervals(50, 40, 30, 20, and 10 mm) in diameter and were fixed at 120 Kvp of tube voltage and 50 mA of tube current. Varied slab thickness((1.0, 2.0, 3.0, 5.0, and 7.0mm) and Helical Pitch(1.5, 2.0, 3.0) were scanned. The image at an interval of 1.0, 2.0, 3.0, 5.0, and 7.0mm was transmitted to the workstation. Threshold(-200, -50, 50 ~ 1,000) was changed using the volume rendering technique, 3D image was reconstructed, and artifact volume was measured. In conclusion, 1.5 of Helical Pitch showed the least change of volume and 3.0 of helical pitch showed the greatest reduction of volume change. The experiment suggested that as slice thickness was increased, artifact volume was decreased more than actual measurement. Furthermore, in the 3D image reconstruction, when the range of threshold was set as -200 ~1,000, artifact volume was changed the least. Based on the results, it is expected to have an effect of reducing exposure dose.