• Title/Summary/Keyword: 3-D Mechanism

Search Result 1,725, Processing Time 0.03 seconds

Nucleophilic Substitution Reactions of Thiopheneethyl Arenesulfonates with Anilines and N,N-Dimethylanilines

  • 오혁근;윤정환;조인호;이익준
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.4
    • /
    • pp.390-394
    • /
    • 1997
  • Nucleophilic substitution reactions of 2-thiopheneethyl benzenesulfonates (2-TEB) and 3-thiopheneethyl benzenesulfonates (3-TEB) with anilines and N,N-dimethylanilines (DMA) are investigated in acetonitrile at 60.0 ℃. The cross-interaction constants ρxz determined for the reactions with anilines are large negative (- 0.50) which are comparable to those for the similar predominantly frontside-attack SN2 reactions of 1-phenylethyl (1-PEB), 2-phenylethyl (2-PEB) and cumyl benzenesulfonates. A large negative ρxz value (- 0.4∼- 0.8) is considered to provide a mechanistic criterion for the frontside-attack SN2 mechanism with a four-center transition state. In agreement with this proposal the kinetic isotope effects, kH/kD, involving deuterated aniline nucleophiles are all greater than one reflecting partial N-H(D) bond cleavage in the transition state. The MO theoretical reactant structures of 1-PEB, 2-PEB and 2-TEB based on the PM3 calculation show that the benzene ring blocks the backside nucleophile approach to the reaction center carbon (Cα) enforcing the frontside-attack SN2 mechanism.

A Study on the Design of the Automatic Cutting Mechanism of the Perforation Pipes in an Automobile Muffler (차량 소음기용 다공파이프 자동절단 메커니즘 설계에 관한 연구)

  • Kim, Yong-Seok;Jeong, Chan-Se;Yang, Soon-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.3
    • /
    • pp.350-356
    • /
    • 2011
  • In this paper, we proposed the automatic cutting mechanism of the perforation pipes in an automobile muffler. This cutting mechanism makes continuous work possible, because it performs the batch work via the sequential operation of loading, feeding, cutting, and discharging. The proposed cutting mechanism consists of the frame unit, escape unit, turning unit, feeding unit, vision system, clamping unit, spindle/cutting unit and cooling unit. And, these mechanisms have been modularized through mechanical, dynamical and structural optimized design using the SMO (SimDesigner Motion) analysis module. Also, the virtual prototype was carried out using the 3-D CAD program. The cutting process cycle is performed in the order of loading, vision processing, feeding, clamping, cutting and discharging. And the cycle time for cutting one piece was designed to be completed in four seconds.

Design and Implementation of the Perception Mechanism for the Agent in the Virtual World (가상 세계 거주자의 지각 메커니즘 설계 및 구현)

  • Park, Jae-Woo;Jung, Geun-Jae;Park, Jong-Hee
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.8
    • /
    • pp.1-13
    • /
    • 2011
  • In order to create an intelligent autonomous agent in virtual world, we need a sophisticated design for perception, recognition, judgement and behavior. We develop the perception and recognition functions for such an autonomous agent. Our perception mechanism identifies lines based on differences in color, the primitive visible data, and exploits those lines to grasp shapes and regions in the scene. We develop an inferencing algorithm that can infer the original shape from a damaged or partially hidden shape using its characteristics from the ontology in order to intelligently recognize the perceived shape. Several individually recognized 2D shapes and their spatial relations form 3D shapes and those 3D shapes in turn constitute a scene. Each 3D shape occupies its respective region, and an agent analyzes the associated objects and relevant scenes to recognize things and phenomena. We also develop a mechanism by which an agent uses this recognition function to accumulate and use her knowledge on the scene in the historical context. We implement these functions presented above against an example situation to demonstrate their sophistication and realism.

A Non-coherent IR-UWB RF Transceiver for WBAN Applications in 0.18㎛ CMOS (0.18㎛ CMOS 공정을 이용한 WBAN용 비동기식 IR-UWB RF 송수신기)

  • Park, Myung Chul;Chang, Won Il;Ha, Jong Ok;Eo, Yun Seong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.2
    • /
    • pp.36-44
    • /
    • 2016
  • In this paper, an Impulse Radio-Ultra Wide band RF Transceiver for WBAN applications is implemented in $0.18{\mu}m$ CMOS technology. The designed RF transceiver support 3-5GHz UWB low band and employs OOK(On-Off Keying) modulation. The receiver employs non-coherent energy detection architecture to reduce complexity and power consumption. For the rejection of the undesired interferers and improvement of the receiver sensitivity, RF active notch filter is integrated. The VCO based transmitter employs the switch mechanism. As adapt the switch mechanism, power consumption and VCO leakage can be reduced. Also, the spectrum mask is always same at each center frequency. The measured sensitivity of the receiver is -84.1 dBm at 3.5 GHz with 1.579 Mbps. The power consumption of the transmitter and receiver are 0.3nJ/bit and 41 mW respectively.

Enhancing Alzheimer's Disease Classification using 3D Convolutional Neural Network and Multilayer Perceptron Model with Attention Network

  • Enoch A. Frimpong;Zhiguang Qin;Regina E. Turkson;Bernard M. Cobbinah;Edward Y. Baagyere;Edwin K. Tenagyei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.11
    • /
    • pp.2924-2944
    • /
    • 2023
  • Alzheimer's disease (AD) is a neurological condition that is recognized as one of the primary causes of memory loss. AD currently has no cure. Therefore, the need to develop an efficient model with high precision for timely detection of the disease is very essential. When AD is detected early, treatment would be most likely successful. The most often utilized indicators for AD identification are the Mini-mental state examination (MMSE), and the clinical dementia. However, the use of these indicators as ground truth marking could be imprecise for AD detection. Researchers have proposed several computer-aided frameworks and lately, the supervised model is mostly used. In this study, we propose a novel 3D Convolutional Neural Network Multilayer Perceptron (3D CNN-MLP) based model for AD classification. The model uses Attention Mechanism to automatically extract relevant features from Magnetic Resonance Images (MRI) to generate probability maps which serves as input for the MLP classifier. Three MRI scan categories were considered, thus AD dementia patients, Mild Cognitive Impairment patients (MCI), and Normal Control (NC) or healthy patients. The performance of the model is assessed by comparing basic CNN, VGG16, DenseNet models, and other state of the art works. The models were adjusted to fit the 3D images before the comparison was done. Our model exhibited excellent classification performance, with an accuracy of 91.27% for AD and NC, 80.85% for MCI and NC, and 87.34% for AD and MCI.

Investigation of Growth Mechanism of Polymer, Ceramic and Metal Thick Films in Aerosol Deposition Method (Aerosol Deposition Method에 있어서 금속, 폴리머, 세라믹 후막의 성장 메커니즘 고찰)

  • Lee, Dong-Won;Nam, Song-Min
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.346-346
    • /
    • 2008
  • 최근 디지털 컨버젼스에 의해서 정보 단말기 network가 디지털 기술을 기반으로 유기적으로 융 복합화 되고 있으며 BT, NT, ET, IT의 융합 기술의 필요성이 점차적으로 증대되고 있다. 이러한 환경 하에서 다양한 정보 및 서비스의 송신 및 수신이 가능한 휴대 단말기의 필요성에 부응하여 기존의 전화 기능, 카메라, DMB 이외에도 홈 네트워크, mobile internet 등 더욱 다양한 기능들이 요구되고 있다. 종래에는 수동 부품과 능동 부품의 실장을 별개로 추진했으나 최근에는 수동 및 능동 부품을 하나의 패키지 내에 실장 가능하도록 하는 3-D Integration을 추진하고 있다. 지금까지 여러 부품들을 실장 시키기 위한 공정들의 대부분은 높은 온도에서 공정이 이루어졌으나 여러 부품들을 손상 없이 집적화하고 실장하기 위해서는 저온화 공정이 필요하다. 최근 많은 저온 공정 중에서 Aerosol Deposition Method는 상온에서 세라믹 후막을 성막할 수 있어 가장 주목받고 있는 공정중의 하나이다. 본 연구에서는 3-D Integration을 실현하기 위해 이종 접합에 유리하고 상온에서 성막 공정이 이루어지는 Aerosol Deposition Method를 이용하여 금속 기판 위에 금속, 폴리머, 세라믹 후막을 성막시켰다. 기판 재료로는 Cu 기판을 사용하였으며 출발 파우더로는 Polyimide 파우더와 $Al_2O_3$ 파우더, Ag 파우더를 사용하였으며 이종 접합간의 메커니즘의 양상을 보기 위해 같은 조건에서 이종 접합간의 성막률을 비교하였으며 FE-SEM으로 미세 구조를 관찰하였다. 또한 기판의 표면 거칠기에 따른 메커니즘의 양상을 연구하였다.

  • PDF

A Study on Joining of 3D Thermoset and Biodegradable Polymers (열경화성 3D 프린트 몰드와 생분해성 소재 접합에 관한 연구)

  • Yoon, Sung Chul;Ma, Jae Kwon;Bang, Dae Wook;Choi, Hae Woon
    • Journal of Welding and Joining
    • /
    • v.32 no.4
    • /
    • pp.20-25
    • /
    • 2014
  • Laser heat source was applied on 3D poly urethane model built by 3D printer and cellulous acetate for joining. A diode laser with 808nm wavelength was transmitted through the 3D model and applied on the boundary of ABS/Acetate and 3D poly urethane model. Based on the experimental result, the ABS and 3D built poly-urethane polymers was successfully joined, but the mechanical strength was not enough at the joining boundaries in the range of 6watt to 8watt of laser heat source. However, biodegradable acetate was successfully joined without damaging the 3D built model and mechanical strength was properly achieved. The optimum laser power was found between 5watt and 8watt with scanning speed of 500mm/min, 700mm/min and 1,000mm/min. Based on the SEM analysis the filling mechanism was that the applied pressure on 3D built model squeezed the fluidic thermoplastics, ABS and acetate, into the structure of 3D model. Therefore soundness of joining was strongly depending on the viscosity of thermoplastics in polymers. The developed laser process is expected to increase productivity and minimize the cost for the final products.