• Title/Summary/Keyword: 3-D Mechanism

Search Result 1,731, Processing Time 0.033 seconds

The investigation of photochemical reaction of phototoxic antimalarial compounds

  • Yoon, Ung-Chan;Epling, Gary-A.
    • Archives of Pharmacal Research
    • /
    • v.3 no.2
    • /
    • pp.87-88
    • /
    • 1980
  • The goal of this research is to provide information that will lead to the development of new non-phototoxic antimalarial compounds. The goal was approached by first learning the chemical mechanism of phototoxicity of six representative compounds 1a-f: a[(diethyl-, -dihexyl-, and -dioctyl- aminomethyl)]-2-(3', 4' -dichlorophenyl)-6-methoxy-4-quinolinemethanol (1a, 1b, and 1c) and .alpha. [(diethyl-, -dibutyl-, and -dihexyl-aminomethyl)]-2-(-4'-methoxyphenyl-6-methoxy-7-chloro-4-quinolinemethan ol (1d, 1e, and 1f). The photochemical reaction of these compounds was investigated in 2-propanol. Similar photochemical fragmentation reactions accurred in all compounds.

  • PDF

The Oxidation of Hydrazobenzene by Oxygen Catalysed by Co (3MeOsalen) in Methanol

  • Homer Roger B.;Cannon Roderick D.;Kim Stephen S.B.
    • Bulletin of the Korean Chemical Society
    • /
    • v.6 no.2
    • /
    • pp.115-118
    • /
    • 1985
  • The oxidation of hydrazobenzene by oxygen in methanol solution is catalysed by Co(3MeOsalen) which is a synthetic oxygen carrier. The products are trans-azobenzene and water. The rate of the reaction has been studied spectrophotometrically and the rate law established. A mechanism involving a ternary complex of catalyst, hydrazobenzene and oxygen has been proposed.

Cut-Through versus Cut-Out: No Easy Way to Predict How Single Lag Screw Design Cephalomedullary Nails Used for Intertrochanteric Hip Fractures Will Fail?

  • Garrett W. Esper;Nina D. Fisher;Utkarsh Anil;Abhishek Ganta;Sanjit R. Konda;Kenneth A. Egol
    • Hip & pelvis
    • /
    • v.35 no.3
    • /
    • pp.175-182
    • /
    • 2023
  • Purpose: This study aims to compare patients in whom fixation failure occurred via cut-out (CO) or cut-through (CT) in order to determine patient factors and radiographic parameters that may be predictive of each mechanism. Materials and Methods: This retrospective cohort study includes 18 patients with intertrochanteric (IT) hip fractures (AO/OTA classification 31A1.3) who underwent treatment using a single lag screw design intramedullary nail in whom fixation failure occurred within one year. All patients were reviewed for demographics and radiographic parameters including tip-to-apex distance (TAD), posteromedial calcar continuity, neck-shaft angle, lateral wall thickness, and others. Patients were grouped into cohorts based on the mechanism of failure, either lag screw CO or CT, and a comparison was performed. Results: No differences in demographics, injury details, fracture classifications, or radiographic parameters were observed between CO/CT cohorts. Of note, a similar rate of post-reduction TAD>25 mm (P=0.936) was observed between groups. A higher rate of DEXA (dual energy X-ray absorptiometry) confirmed osteoporosis (25.0% vs. 60.0%) was observed in the CT group, but without significance. Conclusion: The mechanism of CT failure during intramedullary nail fixation of an IT fracture did not show an association with clinical data including patient demographics, reduction accuracy, or radiographic parameters. As reported in previous biomechanical studies, the main predictive factor for patients in whom early failure might occur via the CT effect mechanism may be related to bone quality; however, conduct of larger studies will be required in order to determine whether there is a difference in bone quality.

Chemical Modification of the $\beta$-D-Xylosidase from Bacillus stearothermophilus (화학적 수식에 의한 Bacillus stearothermophilus $\beta$-D-Xylosidase 의 연구)

  • 서정한;최용진
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.6
    • /
    • pp.636-642
    • /
    • 1994
  • Essential amino acids involving in the catalytic mechanism of the $\beta$-D-xylosidase of Bacillus stearothermophilus were determined by chemical modification studies. Among various che- mical modifiers tested N-bromosuccinimide (NBS), $\rho$-hydroxymercurybenzoate (PHMB), N-ethylma- leimide, 1-[3-(di-ethylamino)-propyl]$-3-ethylcarbodi-imide (EDC), and Woodward's Reagent K(WRK)inactivated the enzyme, resulting in the residual activity of less than 20%. WRK reduced the enzyme activity by modifying carboxylic amino acids, and the inactivation reacion proceeded in the form of pseudo-first-order kinetics. The double-lagarithmic plot of the observed pseudo-first- order rate constant against the modifier concentration yielded a reaction order of 2, indicating that two carboxylic amino acids were essential for the enzyme activity. The $\beta$-D-xylosidase was also inactivated by N-ethylmaleimide which specifically modified a cysteine residue with a reaction order of 1, implying that one cysteine residue was important for the enzyme activity. Xylobiose protected the enzyme against inactivation by WRK and N-ethylmaleimide, revealing that carboxylic amino acids and a cysteine residue were present at the substrate-binding site of the enzyme molecule.

  • PDF

A Study on the Electromigratin Phenomena in Dielectric Passivated Al-1Si Thin Film Interconnections under D.C. and Pulsed D.C.Conditions. (절연보호막 처리된 Al-1 % Si박막배선에서 D.C.와 Pulsed D.C. 조건하에서의 electromigration현상에 관한 연구)

  • 배성태;김진영
    • Journal of the Korean Vacuum Society
    • /
    • v.5 no.3
    • /
    • pp.229-238
    • /
    • 1996
  • The electromigration phenomena and the characterizations of the conductor lifetime (Time-To-Failure, TTF) in Al-1%Si thin film interconnections under D.C. and Pulsed D.C. conditions were investigated . Meander type test patterns were fabricated with the dimensions of 21080$mu \textrm{m}$ length, 3$\mu\textrm{m}$ width, 0.7$\mu\textrm{m}$ thickness and the 0.1$\mu\textrm{m}$/0.8$\mu\textrm{m}$($SiO_2$/PSG)dielectric overlayer. The current densities of $2 \times10^6 A/\textrm{cm}^2$ and $1 \times10^7 A/\textrm{cm}^2$ were stressed in Al-1%Si thin film interconnection s under a D.C. condition. The peak current densities of $2 \times10^6 A/\textrm{cm}^2$ and $1 \times10^7 A/\textrm{cm}^2$ were also applied under a Pulsed D.C. condition at frequencies of 200KHz, 800KHz, 1MHz, and 4MHz with the duty factor of 0.5. THe time-to-failure under a Pulsed D.C.($TTF_{pulsed D.C}$) was appeared to be larger than that under a D.C. condition. It was found that the TTF under both a D.C. and a Pulsed D.C. condition. It was found that the TTF under both a D.C. and a Pulsed D.C. condition largely depends upon the appiled current densities respectively . This can be explained by a relaxation mechanism view due to a duty cycle under a Pulsed D.C. related to the wave on off. The relaxation phenomena during the pulsed off period result in the decayof excess vacancies generated in the Al-1%Si thin film interconnections because of the electrical and mechanical stress gradient . Hillocks and voids formed by an electromigration were observed by using a SEM (Scanning Electron Microscopy).

  • PDF

Anti-diabetic Effect of Crude Polysaccharides from Grifola frondosa in $KK-A^{y}$ Diabetic Mouse and 3T3-L1 Adipocyte (3T3-L1지방세포 및 제2형 당뇨모델($KK-A^{y}$)에서 잎새버섯(Grifola frondosa) 조다당체 추출물의 항당뇨 효과)

  • Park, Kum-Ju;Oh, Young-Joo;Lee, Sang-Yun;Kim, Hyun-Su;Ha, Hyo-Cheol
    • Korean Journal of Food Science and Technology
    • /
    • v.39 no.3
    • /
    • pp.330-335
    • /
    • 2007
  • This study was performed to investigate the anti-diabetic mechanism of crude polysaccharides isolated from the fruiting bodies of Grifola frondosa. We treated 3T3-L1 adipocyte cells to observe whether the crude polysaccharides isolated from Grifola frondosa would stimulate insulin sensitivity. Significant insulin sensitizing activity was observed in the 3T3-L1 adipocytes, and giving the crude polysaccharide of Grifola frondosa with 1 nM of insulin caused glucose uptake to increase to a similar level as giving 50 nM of insulin alone. To confirm the mechanism for the anti-diabetic effect of the crude polysaccharides, we performed further examinations within $KK-A^{y}$ mice, an animal model of type 2 diabetes. The crude polysaccharides reduced blood glucose levels in the $KK-A^{y}$ mice for 2 weeks after feeding, and also significantly lowered plasma insulin levels. These results suggest that the anti-diabetic mechanism of the crude polysaccharide of Grifola frondosa is related to the enhancement of insulin sensitivity.

Developing 3D Simulation Contents for Understanding of Light and Shadow (빛과 그림자 개념 이해를 돕는 3차원 시뮬레이션 콘텐츠 개발 및 적용)

  • Lee, Ji Won;Yoon, Hayoung;Kim, Jung Bog
    • Journal of Science Education
    • /
    • v.38 no.3
    • /
    • pp.703-717
    • /
    • 2014
  • In physics, metal simulation is an important mechanism to understand and create concepts. If students have difficulty in mental simulation, understanding the concept of physics also gets difficult. By providing guide for spatial manipulation to students, 3D simulation contents can help them understand the concept of physics. In this study, the 3D simulation contents developed to help understanding the concept of light going straight and shadow is applied to 20 college students. The results, Hake gain is 0.93, showing high level of understanding about the class. In addition, through mental simulation, students predict the phenomenon well about the new context. This is shown that students' understanding of concept through 3D simulation contents are carried out well.

  • PDF

Damage Mechanism of Particle Impact in a $Cr_2O_3$ Plasma Coated Soda-lime Glass ($Cr_2O_3$ 플라스마 용사 코팅된 유리의 입자충격에 의한 손상기구)

  • Suh, Chang-Min;Lee, Moon-Whan;Kim, Sung-Ho;Jang, Jong-Yun
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.3 s.29
    • /
    • pp.49-59
    • /
    • 1998
  • The damage mechanism of $Cr_2O_3$ plasma coated soda-lime glass and uncoated glass by steel ball particle impact was analyzed in this study. And the shape variation of the cracks was investigated by stereo-microscope according to the impact velocity and steel ball diameter. In order to improve the damage reduction effect by $Cr_2O_3$ coating layer, crack size was measured and surface erosion state was observed for both of two kinds of specimen after impact experiment. And the results were compared with each other. The 4-point bending test was performed according to ASTM D790 testing method to evaluate the effect of coating layer for bending strength variation. As a result, it was found that the crack size of $Cr_2O_3$ coated specimen was smaller than that of uncoated one, because of the impact absorption by interior pores in the coating layer and the load dispersion by the structural characteristic of the coating layer. For the specimens subjected to the steel ball impact, the bending strength of coated specimen was higher than that of uncoated specimen.

  • PDF

Characterization and Cofactor Binding Mechanism of a Novel NAD(P)H-Dependent Aldehyde Reductase from Klebsiella pneumoniae DSM2026

  • Ma, Cheng-Wei;Zhang, Le;Dai, Jian-Ying;Xiu, Zhi-Long
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.12
    • /
    • pp.1699-1707
    • /
    • 2013
  • During the fermentative production of 1,3-propanediol under high substrate concentrations, accumulation of intracellular 3-hydroxypropionaldehyde will cause premature cessation of cell growth and glycerol consumption. Discovery of oxidoreductases that can convert 3-hydroxypropionaldehyde to 1,3-propanediol using NADPH as cofactor could serve as a solution to this problem. In this paper, the yqhD gene from Klebsiella pneumoniae DSM2026, which was found encoding an aldehyde reductase (KpAR), was cloned and characterized. KpAR showed broad substrate specificity under physiological direction, whereas no catalytic activity was detected in the oxidation direction, and both NADPH and NADH can be utilized as cofactors. The cofactor binding mechanism was then investigated employing homology modeling and molecular dynamics simulations. Hydrogen-bond analysis showed that the hydrogen-bond interactions between KpAR and NADPH are much stronger than that for NADH. Free-energy decomposition dedicated that residues Gly37 to Val41 contribute most to the cofactor preference through polar interactions. In conclusion, this work provides a novel aldehyde reductase that has potential applications in the development of novel genetically engineered strains in the 1,3-propanediol industry, and gives a better understanding of the mechanisms involved in cofactor binding.

Efficient Image Retrieval using Minimal Spatial Relationships (최소 공간관계를 이용한 효율적인 이미지 검색)

  • Lee, Soo-Cheol;Hwang, Een-Jun;Byeon, Kwang-Jun
    • Journal of KIISE:Databases
    • /
    • v.32 no.4
    • /
    • pp.383-393
    • /
    • 2005
  • Retrieval of images from image databases by spatial relationship can be effectively performed through visual interface systems. In these systems, the representation of image with 2D strings, which are derived from symbolic projections, provides an efficient and natural way to construct image index and is also an ideal representation for the visual query. With this approach, retrieval is reduced to matching two symbolic strings. However, using 2D-string representations, spatial relationships between the objects in the image might not be exactly specified. Ambiguities arise for the retrieval of images of 3D scenes. In order to remove ambiguous description of object spatial relationships, in this paper, images are referred by considering spatial relationships using the spatial location algebra for the 3D image scene. Also, we remove the repetitive spatial relationships using the several reduction rules. A reduction mechanism using these rules can be used in query processing systems that retrieve images by content. This could give better precision and flexibility in image retrieval.