• Title/Summary/Keyword: 3-D Mechanism

Search Result 1,725, Processing Time 0.032 seconds

Analytical Simulation of Reversed Cyclic Lateral Behaviors of R.C. Shear Wall Subassemblages Using PERFORM 3D (PERFORM 3D를 이용한 RC 벽식 부분구조의 반전 횡하중 거동에 대한 해석적 모사)

  • Lee, Han-Seon;Jeong, Da-Hun;Hwang, Kyung-Ran;Park, Hong-Gun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.6
    • /
    • pp.23-31
    • /
    • 2010
  • It is necessary to develop reliable but simple analytical models to predict the nonlinear response of reinforced concrete wall structures. In this study, experimental results on the cyclic reversed lateral behaviors of reinforced concrete shear wall assemblages are simulated analytically by using the wall, beam, and column models available in the PERFORM 3D program. Through the comparison of experimental and analytical results, the reliability and limitations of the analysis are evaluated. In addition, the information, which could not be obtained experimentally, such as the internal flow of force, the contribution of the flange walls, and the resisting mechanism of the walls with the contribution of the coupling beam, is provided.

A Study on the Simulation of Ink Penetration into the Uncoated Papers in Gravure Printing (그라비어 인쇄에서 비도피지의 잉크 침투 시뮬레이션에 관한 연구)

  • Seo, Yea-Ri;Youn, Jong-Tae
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.28 no.1
    • /
    • pp.1-13
    • /
    • 2010
  • Gravure printing and manufacturing of advanced electronic components in a way that is going extra hold position. It is to print the electronic components of the rapid productivity improvements as well as cost-saving and environment-friendly industries such as the transition is a big advantage. However the mechanism of gravure is difficult to study scientifically because of high speed and excessively small size of the cell. To approach the mechanism we experimented using gravure printability. The condition of variables of IGT is pressure and velocity. By using Flow-3D simulation software, we built up the theoretical model under the constant variables. Then, we compared the real test with the simulation results. Therefore, it is studied the mechanism of gravure scientifically and it can be analysed the effect of the variable conditions.

SWM Utilized Cable Drive System (SWM을 이용한 케이블 드라이브 시스템)

  • Lee, Bum-Joo;Kim, Kab Il
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.2
    • /
    • pp.272-276
    • /
    • 2014
  • In this paper, cable drive mechanism is proposed to implement high reduction gear ratio. Cable drive mechanism has great advantages such as light weight, high degree of freedom about design aspect and zero backlashes. However, it is restrictively utilized for robotic applications because it is difficult to implement high reduction gear ratio more than 10 to 1. Proposed mechanism enables multi-level reductions by adopting seamless winding method (SWM) which links the previous output axis and the next input axis. Consequently, this reduces the mechanical complexity significantly and enables high reduction with only one single wire cable. 3D CAD design was provided and prototype was manufactured.

Inverse and Forward Kinematics Analysis of 6 DOF Multi Axis Simulation Table and Verification (6 자유도 다축 시뮬레이션 테이블의 역.순기구학 해석 및 검증)

  • Jin, Jae-Hyun;Jeon, Seung-Bae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.2
    • /
    • pp.202-208
    • /
    • 2008
  • A 6 DOF Multi axis simulation table (MAST) is used to perform vibration and fatigue tests for parts or assemblies of automobiles, aircraft, or other systems. It consists of a table and 6 linear actuators. For its attitude control, we have to adjust the lengths of 6 actuators properly. The system is essentially a parallel mechanism. Three actuators are connected to the table directly and other three actuators are connected indirectly. Because of these, the MAST shows also a serial mechanism#s property: the inverse kinematics is more complicated than a pure parallel mechanism and each actuator can operate independently. The authors have performed a kinematics analysis of the 6 DOF MAST. We have presented an analytical and a numerical solution for the inverse and forward kinematics, and we have verified the solutions by a 3D CAD software.

Preparation of corrosion-resistive thin films by ion plating method and their corrosion protection mechanism (이온 플레이팅법에 의한 내식 박막의 제작과 부식방식 메카니즘)

  • Lee, K.H.;Bae, I.Y.;Kim, K.J.;Moon, K.M.;Lee, M.H.
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.285-286
    • /
    • 2006
  • Magnesium is the lightest of all the structural metals having density of 1.74. It is approximately 2/3 lighter than aluminium, l/4 lighter than titanium alloy and 1/5 lighter than iron. Among the light-weight alloys, magnesium and its alloys show a good possibility for high performance aerospace and automotive applications, however the widespread use of magnesium alloys has been limited mainly by its poor oxidation and corrosion resistance. In this work, corrosion-resistive thin films were prepared onto the magnesium alloy substrate(AZ91D) by environmental friendly coating technique, ion plating method. And their corrosion protection mechanism were analyzed.

  • PDF

Development of Leg Stiffness Controllable Artificial Tendon Actuator (LeSATA®) Part I - Gait Analysis of the Metatarsophalangeal Joint Tilt Angles Soonhyuck - (하지강성 가변 인공건 액추에이터(LeSATA®)의 개발 Part I - Metatarsophalangeal Joint Tilt Angle의 보행분석 -)

  • Han, Gi-Bong;Eo, Eun-Kyung;Oh, Seung-Hyun;Lee, Soon-Hyuck;Kim, Cheol-Woong
    • Transactions of the KSME C: Technology and Education
    • /
    • v.1 no.2
    • /
    • pp.153-165
    • /
    • 2013
  • The established gait analysis studies have regarded leg as one single spring. If we can design a knee-ankle actuating mechanism as a primary actuator for supporting knee extension, it might be possible to revolutionary store or release elastic strain energy, which is consumed during the gait cycle, and as a result leg stiffness is expected to increase. An ankle joint actuating mechanism that stores and releases the energy in ankle joint is expected to support and solve excessive artificial leg stiffness caused by the knee actuator (primary actuator) to a reasonable extent. If unnecessary kinematic energy is released with the artificial speed reduction control designed to prevent increase in gait speed caused by increase in time passed, it naturally brings question to the effectiveness of the actuator. As opposed to the already established studies, the authors are currently developing knee-ankle two actuator system under the concept of increasing lower limb stiffness by controlling the speed of gait in relative angular velocity of the two segments. Therefore, the author is convinced that compensatory mechanism caused by knee actuating must exist only in ankle joint. Ankle joint compensatory mechanism can be solved by reverse-examining the change in metatarso-phalangeal joint (MTPJ) tilt angle (${\theta}_1=0^{\circ}$, ${\theta}_2=17^{\circ}$, ${\theta}_3=30^{\circ}$) and the effect of change in gait speed on knee activity.

Embryonic Stem Cell-Preconditioned Microenvironment Effects on Epidermoid Carcinoma

  • Ryoo, Zae Young;Kim, Myoung Ok
    • Reproductive and Developmental Biology
    • /
    • v.36 no.4
    • /
    • pp.275-281
    • /
    • 2012
  • Embryonic stem cell-preconditioned microenvironment is important for cancer cells properitities by change cell morphology and proliferation. This microenvironment induces cancer cell reprogramming and results in a change in cancer cell properties such as differentiation and migration. The cancer microenvironment affects cancer cell proliferation and growth. However, the mechanism has not been clarified yet. Using the ES-preconditioned 3-D microenvironment model, we provide evidence showing that the ES microenvironment inhibits proliferation and reduces oncogenic gene expression. But ES microenvironment has no effect on telomerase activity, cell viability, cellular senescence, and methylation on Oct4 promoter region. Furthermore, methylation of Nanog was increase on ES-preconditioned microenvironment and supports results that no difference on RNA expression levels. Taken together, these results demonstrated that in the ES-preconditioned 3-D microenvironment is a crucial role for cancer cell proliferation not senescence.

A Study on the establishing a 3D equipment Database for BIM -Focused on the establishing of a Tower Crane Database- (BIM 환경에서의 3D 장비 Database 구축에 관한 연구 -Tower Crane Database 구축을 중심으로-)

  • Shim, Tae-Bo;Yun, Seok-Heon;Paek, Joon-Hong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.454-457
    • /
    • 2008
  • The purpose of this study is to establish 3D equipment database for BIM because of efficient using a BIM tool. In this study (or paper), we analysis the mechanism of using equipment database. And then, a based on this results we apply and conduct the results. Therefore we expect to make better using method of BIM and efficient planning method of equipment.

  • PDF