• Title/Summary/Keyword: 3-D FEM Analysis

Search Result 690, Processing Time 0.027 seconds

Seismic Fragility Analysis of Curved Beam with I-Shape Section (I-Shape 단면을 갖는 곡선 보의 지진 취약도 분석)

  • Jeon, Juntai;Ju, Bu-Seog;Son, Hoyoung
    • Journal of the Society of Disaster Information
    • /
    • v.14 no.3
    • /
    • pp.379-386
    • /
    • 2018
  • Purpose: This study was to the fragility evaluation of I-shape curved beam structure subjected to strong ground motions including Gyeongju and Pohang earthquakes Method: In particular, to conduct the analytical model, ABAQUS and ANSYS platform was used in this study. Furthermore, the analytical model using 3D Finite Element Model (FEM) was validated, in comparison to the theoretical solutions at the location of 025L, 05L, and 0.75L in static loading condition. In addition, in order to evaluate the seismic fragility of the curved beam structure, 20 seismic ground motions were selected and Monte-Carlo Simulation was used for the empirical fragility evaluation from 0.2g to 1.5g. Result: It was interesting to find that the probability of the system failure was found at 0.2g, as using 190 MPa limit state and the probability of the failure using 390 MPa limit state was starting from 0.6g. Conclusion: This study showed the comparison of the theoretical solution with analytical solution on I-shaped curved beam structures and it was interesting to note that the system subjected to strong ground motions was sensitive to high frequency earthquake. Further, the seismic fragility corresponding to the curved beam shapes must be evaluated.

Effects of Raft Flexibility on the Behavior of Piled Raft Foundations in Sandy Soil (사질토에 근입된 말뚝지지 전면기초의 기초판 연성률에 따른 거동 분석)

  • Song, Su-Min;Shin, Jong-Young;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.3
    • /
    • pp.5-16
    • /
    • 2023
  • The effect of raft flexibility on piled raft foundations in sandy soil was investigated using a numerical analysis and an analytical study. The investigation's emphasis was the load sharing between piles and raft following the raft rigidity (KR), end-bearing conditions. The case of individual piles and subsequently the response of groups of piles was analyzed using a 3D FEM. This study shows that the αpr, load-sharing ratio of piled raft foundations, decreases as the vertical loading increases and as the KR decreases. This tendency is more obvious when using friction piles compared to using end-bearing piles. The effect of raft rigidity is found to be more significant for the axial force distribution - each pile within the foundations has almost similar axial forces of the pile head with a flexible raft; however, each pile has different values with rigid rafts, especially with the end-bearing piles. The axial force of the pile base with floating piles shows similar point-bearing resistance for all the piles; however, it shows different values with end-bearing piles. The differential settlement ratio of rafts showed a larger value with lower KR.

Nonlinear Lateral Behavior and Cross-Sectional Stress Distribution of Concrete Rocking Columns (콘크리트 회전형 기둥의 비선형 횡방향 거동 및 단면응력 분포 분석)

  • Roh, Hwa-Sung;Hwang, Woong-Ik;Lee, Hu-Seok;Lee, Jong-Seh
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.285-292
    • /
    • 2012
  • Fixed connection is generally used for beam and column connections of concrete structures, but significant damages at the connection due to severe earthquakes have been reported. In order to reduce damages of the connection and improve seismic performance of the connection, several innovative connections have been suggested. One newly proposed connection type allows a rotation of the connection for applications in rotating or rocking beams, columns, and shear walls. Such structural elements would provide a nonlinear lateral force-displacement response since their contact depth developed during rotation is gradually reduced and the stress across the sections of the elements is non-linearly distributed around a contact area, which is called an elastic hinge region in the present study. The purpose of the present study is to define the elastic hinge region or length for the rocking columns, through investigating the cross-sectional stress distribution during their lateral behavior. Performing a finite element analysis (FEA), several parameters are considered including axial load levels (5% and 10% of nominal strength), different boundary conditions (confined-ends and cantilever types), and slenderness ratios (length/depth = 5, 7, 10). The FEA results showed that the elastic hinge length does not directly depend on the parameters considered, but it is governed by a contact depth only. The elastic hinge length started to develop after an opening state and increased non-linearly until a rocking point(pre-rocking). However, the length did not increase any more after the rocking point (post-rocking) and remained as a constant value. Half space model predicting the elastic hinge length is adapted and the results are compared with the numerical results.

Theoretical Research for Unmanned Aircraft Electromagnetic Survey: Electromagnetic Field Calculation and Analysis by Arbitrary Shaped Transmitter-Loop (무인 항공 전자탐사 이론 연구: 임의 모양의 송신루프에 의한 전자기장 반응 계산 및 분석)

  • Bang, Minkyu;Oh, Seokmin;Seol, Soon Jee;Lee, Ki Ha;Cho, Seong-Jun
    • Geophysics and Geophysical Exploration
    • /
    • v.21 no.3
    • /
    • pp.150-161
    • /
    • 2018
  • Recently, unmanned aircraft EM (electromagnetic) survey based on ICT (Information and Communication Technology) has been widely utilized because of the efficiency in regional survey. We performed the theoretical study on the unmanned airship EM system developed by KIGAM (Korea Institute of Geoscience and Mineral resources) as part of the practical application of unmanned aircraft EM survey. Since this system has different configurations of transmitting and receiving loops compared to the conventional aircraft EM systems, a new technique is required for the appropriate interpretation of measured responses. Therefore, we proposed a method to calculate the EM field for the arbitrary shaped transmitter and verified its validity through the comparison with analytic solution for circular loop. In addition, to simulate the magnetic responses by three-dimensionally (3D) distributed anomalies, we have adapted our algorithm to 3D frequency-domain EM modeling algorithm based on the edge-FEM (finite element method). Though the analysis on magnetic field responses from a subsurface anomaly, it was found that the response decreases as the depth of the anomaly increases or the flight altitude increases. Also, it was confirmed that the response became smaller as the resistivity of the anomaly increases. However, a nonlinear trend of the out-of-phase component is shown depending on the depth of the anomaly and the used frequency, that makes it difficult to apply simple analysis based on the mapping of the magnitude of the responses and can cause the non-uniqueness problem in calculating the apparent resistivity. Thus, it is a prerequisite to analyze the appropriate frequency band and flight altitude considering the purpose of the survey and the site conditions when conducting a survey using the unmanned aircraft EM system.

Stress distribution in bone surrounding maxillary molar implants under different crown-to-fixture ratio: A 3D FEM analysis (치관/고정체 비에 따른 상악 구치부 임플란트 주변골의 응력 분포에 대한 3차원 유한요소법적 분석)

  • Park, Jong-Chan;Shin, Sang-Wan;Kwon, Kung-Rock
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.5
    • /
    • pp.479-489
    • /
    • 2008
  • Statement of the problem: Under anatomical limitations on maxillary posterior region, a poor crown-to root ratio acting on dental implants can result in undesirable stress in surrounding bone, which in turn can cause bone defects and eventual failure of implants. Purpose: The purpose is to compare stress distribution due to different crown-root ratio and effect of splinting between natural teeth and implants in maxillary molar area under different loads. Material and methods: Analysis of stress arising supporting bone of the natural teeth and the implant was made with 3-dimensional finite element method. The model simulated naturel teeth was made with 2nd premolar and 1st molar in the maxillary molar region (Model T). The model simulated implants placed on same positions with two parallel implants of Straumann Dental Implant cemented abutment (Model I). Each model was designed in different crown-root ratio (0.7:1, 1:1, 1.25:1) and set cement type gold crown to make it non-splinted or splinted. After that, 300 N force was loaded to each model in five ways (Load 1: middle of occlusal table, Load 2: middle of buccal cusp, Load 3: middle of lingual cusp, Load 4: horizontal load to buccal cusp of anterior abutment only, Load 5: horizontal load to middle of buccal cusp of each abutment), and stress distribution was analyzed. Results and conclusion: On all occasions, stress was concentrated at the cervical region of the implant. Under load 1, 2 and 3, stress was not increased even when crown-root ratio increases, but under load 4 and 5, when crown-root ratio increases, stress also increased. There was difference in stress values between natural teeth and implants when crown-root ratio gradually increases; In case of natural teeth, splinting decreased stress under vertical and horizontal loads. In case of implants, splinting decreased stress under vertical loads 1,2 and 3, but increased maximal stress under loads 2 and 3. Under horizontal loads, splinting decreased stress, however the effect of splinting decreased under load 5 than load 4. Furthermore, the stress was increased, when crown-root ratio is 1.25:1. Clinical implications: This limited finite element study suggests that the stress on supporting bone may be increased under non-axial loads and poor crown-root ratio. Under poor crown-root ratio, excessive stress was generated at the cervical region of the implant, and decreased splinting effect for stress distribution, which can be related to clinical failure.

A STUDY ON CLASS II COMPOSITE RESIN CAVITY USING FINITE ELEMENT STRESS ANALYSIS (유한요소법을 이용한 2급 복합레진 와동의 비교 연구)

  • Rim, Young-Il;Yo, In-Ho;Um, Chung-Moon
    • Restorative Dentistry and Endodontics
    • /
    • v.22 no.1
    • /
    • pp.428-446
    • /
    • 1997
  • Restorative procedures can lead to weakening tooth due to reduction and alteration of tooth structure. It is essential to prevent fractures to conserve tooth. The resistance to fracture of the restored tooth may be influenced by many factors, among these are the cavity dimension and the physical properties of the restorative material. The placement of direct composite resin restorations has generally been found to have a strengthening effect on the prepared teeth. It is the purpose of this investigation to study the relationship between the cavity isthmus and the fracture resistance of a tooth in composite resin restorations. In this study, MO cavity was prepared on maxillary first premolar. Three dimensional finite element models were made by serial photographic method and isthmus(1/4, 1/3, 1/2 of intercuspal distance) were varied. Two types of model(B and R model) were developed. B model was assumed perfect bonding between the restoration and cavity wall and R model was left unfilled. A load of 500N was applied vertically at the first node from the lingual slope of the buccal cusp tip. This study analysed the displacement, 1 and 2 direction normal stress and strain with FEM software ABAQUS Version 5.2 and hardware IRIS 4D/310 VGX Work-station. The results were as follows : 1. Displacement of buccal cusp in R model occurred and increased as widening of the cavity, and displacement in B model was little and not influenced by cavity width. 2. There was a significant decrease of stress resulting in increase of fracture resistance in B model when compared with R model. 3. With the increase of the isthmus width, B model showed no change in the stress and strain. In R model, the stress and strain increased both in the area of buccal-pulpal line angle and the buccal side of marginal ridge, therefore the possibility of crack increased. 4. The stress and strain were distributed evenly on the tooth in B model, but in R model, were concentrated on the buccal side of the distal marginal ridge and buccal-pulpal line angle, therefore the possibility of fracture increased.

  • PDF

A Biomechanical Study on a New Surgical Procedure for the Treatment of Intertrochanteric Fractures in relation to Osteoporosis of Varying Degrees (대퇴골 전자간 골절의 새로운 수술기법에 관한 생체역학적 분석)

  • 김봉주;이성재;권순용;탁계래;이권용
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.5
    • /
    • pp.401-410
    • /
    • 2003
  • This study investigates the biomechanical efficacies of various cement augmentation techniques with or without pressurization for varying degrees of osteoporotic femur. For this study, a biomechanical analysis using a finite element method (FEM) was undertaken to evaluate surgical procedures, Simulated models include the non-cemented(i.e., hip screw only, Type I), the cement-augmented(Type II), and the cemented augmented with pressurization(Type III) models. To simulate the fracture plane and other interfacial regions, 3-D contact elements were used with appropriate friction coefficients. Material properties of the cancellous bone were varied to accommodate varying degrees of osteoporosis(Singh indices, II∼V). For each model. the following items were analyzed to investigate the effect surgical procedures in relation to osteoporosis of varying degrees : (a) von Mises stress distribution within the femoral head in terms of volumetric percentages. (b) Peak von Mises stress(PVMS) within the femoral head and the surgical constructs. (c) Maximum von Mises strain(MVMS) within the femoral head, (d) micromotions at the fracture plane and at the interfacial region between surgical construct and surrounding bone. Type III showed the lowest PVMS and MVMS at the cancellous bone near the bone-construct interface regardless of bone densities. an indication of its least likelihood of construct loosening due to failure of the host bone. Particularly, its efficacy was more prominent when the bone density level was low. Micromotions at the interfacial surgical construct was lowest in Type III. followed by Type I and Type II. They were about 15-20% of other types. which suggested that pressurization was most effective in limiting the interfacial motion. Our results demonstrated the cement augmentation with hip screw could be more effective when used with pressurization technique for the treatment of intertrochanteric fractures. For patients with low bone density. its effectiveness can be more pronounced in limiting construct loosening and promoting bone union.

Stress Patterns in the Reconstructed Double Bundles of the Anterior Cruciate Ligament in Response to an Anterior Tibial Load and Rotatory Load: an Analysis using a 3-Dimensional Finite Element Model (삼차원 유한 요소 모델을 이용한 전방십자인대 이중다발 재건술 후 전방 전위 및 회전 부하에 따른 이식건 응력 양상 분석)

  • Seo, Young-Jin;Song, Si Young;Ahn, Jung Tae;Kim, Yoon-Sang;Ko, Jun Ho;Jang, Seong-Wook;Yoo, Yon-Sik
    • Journal of the Korean Arthroscopy Society
    • /
    • v.16 no.2
    • /
    • pp.160-166
    • /
    • 2012
  • Purpose: The aim of this study was to determine the patterns of the stress distribution within the reconstructed anterior cruciate ligament (ACL) double bundles in response to an anterior tibial load and rotatory load at $45^{\circ}$ flexed knee model by use of a 3-dimensional finite element analysis (FEM). Materials and Methods: The $0^{\circ}$ and $45^{\circ}$ flexed 3-D knee model were reconstructed based on the high resolution computed tomography (CT) images from the right knee of a healthy male subject. To simulate double bundle ACL reconstruction, in $0^{\circ}$ analytic model, four 7 mm diameter tunnels were created at the center of each anteromedial (AM) and posterolateral (PL) footprints on the femur and tibia. The grafts were inserted into the corresponding bone tunnels and then reconstructed knee model was flexed to $45^{\circ}$. As a next step, the 5 mm anterior tibial load and internal rotational load of $10^{\circ}$ were applied on the final Computer aided design (CAD) model. And then stress patterns of each bundle were assessed using a finite element analysis. Results: In response to the 5 mm of anterior tibial load, the AM bundle showed increased stresses around the tibial and femoral attachment sites; especially in the anterior aspect of the bundle. In the PL bundle, the highest stress concentration was also noticed on the anterior aspect of the bundle. Under $10^{\circ}$ internal rotational load, the stress concentration was predominant around the anterior aspect of the tibial attachment site within the AM bundle. The PL bundle also showed highest stress concentration on the anterior aspect of the bundle. Conclusion: Although the stress patterns were not identical among the AM and PL bundle, there were common trends in the stress distribution. The stress concentration was predominant on the anterior aspect of both bundles in response to the anterior tibial load and rotatory load.

  • PDF

Evaluation of the stress distribution in the external hexagon implant system with different hexagon height by FEM-3D (임플란트 hexagon 높이에 따른 임플란트와 주위 조직의 응력분포 평가)

  • Park, Seong-Jae;Kim, Joo-Hyeun;Kim, So-Yeun;Yun, Mi-Jung;Ko, Sok-Min;Huh, Jung-Bo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.50 no.1
    • /
    • pp.36-43
    • /
    • 2012
  • Purpose: To analyze the stress distribution of the implant and its supporting structures through 3D finite elements analysis for implants with different hexagon heights and to make the assessment of the mechanical stability and the effect of the elements. Materials and methods: Infinite elements modeling with CAD data was designed. The modeling was done as follows; an external connection type ${\phi}4.0mm{\times}11.5mm$ Osstem$^{(R)}$ USII (Osstem Co., Pusan, Korea) implant system was used, the implant was planted in the mandibular first molar region with appropriate prosthetic restoration, the hexagon (implant fixture's external connection) height of 0.0, 0.7, 1.2, and 1.5 mm were applied. ABAQUS 6.4 (ABAQUS, Inc., Providence, USA) was used to calculate the stress value. The force distribution via color distribution on each experimental group's implant fixture and titanium screw was studied based on the equivalent stress (von Mises stress). The maximum stress level of each element (crown, implant screw, implant fixture, cortical bone and cancellous bone) was compared. Results: The hexagonal height of the implant with external connection had an influence on the stress distribution of the fixture, screw and upper prosthesis and the surrounding supporting bone. As the hexagon height increased, the stress was well distributed and there was a decrease in the maximum stress value. If the height of the hexagon reached over 1.2mm, there was no significant influence on the stress distribution. Conclusion: For implants with external connections, a hexagon is vital for stress distribution. As the height of the hexagon increased, the more effective stress distribution was observed.

An Evaluation of Allowable Bearing Capacity of Weathered Rock by Large-Scale Plate-Bearing Test and Numerical Analysis (대형평판재하시험 및 수치해석에 의한 풍화암 허용지지력 평가)

  • Hong, Seung-Hyeun
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.10
    • /
    • pp.61-74
    • /
    • 2022
  • Considering that the number of cases in which a structure foundation is located on weathered rock has been increasing recently, for adequate design bearing capacity of a foundation on weathered rock, allowable bearing capacities of such foundations in geotechnical investigation reports were studied. With reference to the study results, the allowable bearing capacity of a foundation on weathered rock was approximately 400-700 kN/m2, with a large variation, and was considered a conservative value. Because the allowable bearing capacity of the foundation ground is an important index in determining the foundation type in the early design stage, it can have a significant influence on the construction cost and period according to the initial decision. Thus, in this study, six large-scale plate-bearing tests were conducted on weathered rock, and the bearing capacity and settlement characteristics were analyzed. According to the test results, the bearing capacities from the six tests exceeded 1,500 kN/m2, and it shows that the results are similar with the one of bearing capacity formula by Pressuremeter tests when compared with the various bearing capacity formula. In addition, the elastic modulus determined by the inverse calculation of the load-settlement behavior from the large-scale plate-bearing tests was appropriate for applying the elastic modulus of the Pressuremeter tests. With consideration of the large-scale plate-bearing tests in this study and other results of plate-bearing tests on weathered rock in Korea, the allowable bearing capacity of weathered rock is evaluated to be over 1,000 kN/m2. However, because the settlement of the foundation increases as the foundation size increases, the allowable bearing capacity should be restrained by the allowable settlement criteria of an upper structure. Therefore, in this study, the anticipated foundation settlements along the foundation size and the thickness of weathered rocks have been evaluated by numerical analysis, and the foundation size and ground conditions, with an allowable bearing capacity of over 1,000 kN/m2, have been proposed as a table. These findings are considered useful in determining the foundation type in the early foundation design.