• Title/Summary/Keyword: 3-D FEM

Search Result 930, Processing Time 0.03 seconds

A Study on the Minimization of Tie-plate Loss of Cast Resin Transformer using Surface Impedance Boundary Condition (표면 임피던스 경계조건을 이용한 몰드변압기 Tie-plate 손실 최소화에 관한 연구)

  • Hwang, Sung-Ryul;Shin, Pan Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.9
    • /
    • pp.1334-1340
    • /
    • 2017
  • In this paper, a tie-plate shape is optimized by using the numerical technique to reduce the stray load loss of the tie-plate which is a mechanical structure for assembling and supporting of the transformer core. The eddy current loss of the structure is calculated by an electromagnetic field FEM program and the results are compared with 4 different shapes of tie-plates. Since the thickness of the tie-plate is very thin, and the skin depth is very small, the number of FE elements for 3-D transformer model is too big to solve. So, the surface impedance boundary condition (SIBC) is used to reduce the system matrix size and its computing time. To verify the method a 2.5 MVA 22,900/380V distribution transformer is simulated using one objective function and three design variables with some constraints. The final optimized tie-plate has three slots of 6 mm width and 23 mm gap, and the loss is reduced by 75 %. Consequently, the proposed algorithm seems to be considerably applicable to electric machinery as well as power transformer.

Analysis of Stiffness for Frustum-shaped Coil Spring (원추형 코일스프링의 강성해석)

  • Kim, Jin-Hun;Lee, Soo-Jong;Kim, Jung-Ryul
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.2
    • /
    • pp.250-255
    • /
    • 2008
  • Springs are widely utilized in machine element. To find out stiffness of frustum-shaped coil spring, the space beam theory using the finite element method is adopted in this paper. In three dimensional space, a space frame element is a straight bar of uniform cross section which is capable of resisting axial forces, bending moments about two principal axes in the plane of its cross section and twisting moment about its centroidal axis. The corresponding displacement degrees of freedom are twelve. To find out load vector of coil spring subjected to distributed compression. principle of virtual work is adapted. And this theory was programming using MATLAB software. To compare FEM using MATLAB software was applied MSC. Nastran software. The geometry model for MSC. Patran was produced by 3-D design modeling software. Finite element model was produced by MSC. Patran. Finite element was applied tetra (CTETRA) having 10 node. The analysis results of the MATLAB and MSC. Nastran are fairly well agreed with those of various experiments. Using MATLAB program proposed in this paper and MSC. Nastran, spring constants and stresses can be predicted by input of few factors.

Computer modeling and analytical prediction of shear transfer in reinforced concrete structures

  • Kataoka, Marcela N.;El Debs, Ana Lucia H.C.;Araujo, Daniel de L.;Martins, Barbara G.
    • Computers and Concrete
    • /
    • v.26 no.2
    • /
    • pp.151-159
    • /
    • 2020
  • This paper presents an evaluation of shear transfer across cracks in reinforced concrete through finite element modelling (FEM) and analytical predictions. The aggregate interlock is one of the mechanisms responsible for the shear transfer between two slip surfaces of a crack; the others are the dowel action, when the reinforcement contributes resisting a parcel of shear displacement (reinforcement), and the uncracked concrete comprised by the shear resistance until the development of the first crack. The aim of this study deals with the development of a 3D numerical model, which describes the behavior of Z-type push-off specimen, in order to determine the properties of interface subjected to direct shear in terms cohesion and friction angle. The numerical model was validated based on experimental data and a parametric study was performed with the variation of the concrete strength. The numerical results were compared with analytical predictions and a new equation was proposed to predict the maximum shear stress in cracked concrete.

Hydrodynamic analysis of floating structures with baffled ARTs

  • Kim, San;Lee, Kang-Heon
    • Structural Engineering and Mechanics
    • /
    • v.68 no.1
    • /
    • pp.1-15
    • /
    • 2018
  • In ocean industry, free surface type ART (Anti Roll tank) system has been widely used to suppress the roll motion of floating structures. In those, various obstacles have been devised to obtain the sufficient damping and to enhance the controllability of freely rushing water inside the tank. Most of previous researches have paid on the development of simple mathematical formula for coupled ship-ARTs analysis although other numerical and experimental approaches exist. Little attention has been focused on the use of 3D panel method for preliminary design of free surface type ART despite its advantages in computational time and general capacity for hydrodynamic damping estimation. This study aims at developing a potential theory based hydrodynamic code for the analysis of floating structure with baffled ARTs. The sloshing in baffled tanks is modeled through the linear potential theory with FE discretization and it coupled with hydrodynamic equations of floating structures discretized by BEM and FEM, resulting in direct coupled FE-BE formulation. The general capacity of proposed formulation is emphasized through the coupled hydrodynamic analysis of floating structure and sloshing inside baffled ARTs. In addition, the numerical methods for natural sloshing frequency tuning and estimation of hydrodynamic damping ratio of liquid sloshing in baffled tanks undergoing wave exiting loads are developed through the proposed formulation. In numerical examples, effects of natural frequency tuning and baffle ratios on the maximum and significant roll motions are investigated.

FEM Analysis on the Characteristics of Piezoelectric Ceramics Using $L_{1}-B_{4}$ Vibration mode ($L_{1}-B_{4}$ 진동모드를 이용하는 압전 세라믹스의 유한요소 해석)

  • 김범진;정동석;김태열;박태곤;김명호
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.393-397
    • /
    • 2001
  • A linear ultrasonic motor was designed by a combination of the first longitudinal and fourth bending mode, the motor consisted of a straight aluminum alloys bar bonded with a piezoelectric ceramics element as a driving element. That is, L$_1$-B$_4$ linear ultrasonic motor can be constructed using a multi-mode vibrator of longitudinal and bending modes. The simulation with variation of material characteristics of piezoceramic were performed as use of finite element analysis ANSYS 5.5, such as elastic compliance, piezoelectric constant, electro-mechanical coupling coefficient, poisson's ratio and density. The results of simulation, elastic compliance constant s$_{11}$ and piezoelectric constant d$_{31}$ had the most of influence on the elliptic-motion. This results consist with using transverse effect of material. The used motor were piezoceramics of 4 layers, and the dimensions were 65$\times$5$\times$3.5mm(LxWxt).).

  • PDF

Estimation of Magnetic Co-Energy in Salient Pole Rotor Type Single Phase SRM

  • Kim, Jun-Ho;Lee, Eun-Woong;Cho, Hyun-Kil;Lee, Jong-Han;Lee, Chung-Won
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.4B no.2
    • /
    • pp.47-53
    • /
    • 2004
  • The salient pole rotor type single phase SRM (switched reluctance motor) uses radial and axial direction magnetic flux simultaneously. Therefore, the output power per unit volume is very high and the shaft length is shorter than other types of SRMs with the same output. Furthermore, it can be manufactured with low cost owing to its simple structure and driving circuit. The prototype was designed using the theory of the traditional rotating machine and 3D FEM analysis. On this paper, the experiment apparatus, which includes the fabricated prototype in previous researches, was fabricated to measure the current and voltage of the prototype. Then the flux linkage, inductance and magnetic co-energy were calculated using the experimental results. Finally, the measured magnetic co-energy was compared with the simulated magnetic co-energy.

A New Measurement Method of Dielectric Constants Applied the Principles of Cross Capacitance (Cross Capacitance 원리를 작용한 새로운 유전상수 측정방법 제안)

  • Kim, Han-Jun;Lee, Rae-Duk;Kang, Jeon-Hong;Yu, Kwang-Min;Han, Sang-Ok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.1084-1087
    • /
    • 2002
  • The guard-ring type 3-terminal parallel plate electrodes proposed by ASTM D 150-81 and IEC 250 have been widely used for measurement of dielectric constants of solid dielectrics. However the method using this electrodes causes many uncertainty associated with the measurement errors of the diameter of the guarded electrode. the gap between guarded and guard-ring electrode. the distance of two active electrodes(the thickness of specimen), the roughness and contamination of surface of electrode and specimen. close adherence grade of electrode and specimen. In this paper. a new electrode system of cross capacitance type based on Thompson-Lampard theorem is designed and is employed for the measurement of dielectric constant. The results of simulation of guard-ring electrode and cross capacitance electrode using FEM program show that distance measurement between two electrodes in guard-ring electrode produces large uncertainty. on the other hand this effect in cross capacitance electrode is negligible. Furthermore. the air gap effects in the cross capacitance electrode is 5.6 times less sensitive than that in guard-ring electrode by assuming air gap of $50{\mu}m$.

  • PDF

Static Structural Analysis on the Mechanical behavior of the KALIMER Fuel Assembly Duct

  • Kim, Kyung-Gun;Lee, Byoung-Oon;Woan Hwang;Kim, Young ll;Kim, Yong su
    • Nuclear Engineering and Technology
    • /
    • v.33 no.3
    • /
    • pp.298-306
    • /
    • 2001
  • As fuel burnup proceeds, thermal gradients, differential swelling, and inter-assembly loading may induce assembly duct bowing. Since duct bowing affects the reactivity, such as long or short term power-reactivity-decrement variations, handling problem, caused by top end deflection of the bowed assembly duct, and the integrity of the assembly duct itself. Assembly duct bowing were first observed at EBR-ll in 1965, and then several designs of assembly ducts and core restraint system were used to accommodate this problem. In this study, NUBOW-2D KMOD was used to analyze the bowing behavior of the assembly duct under the KALIMER(Korea Advanced Liquid MEtal Reactor) core restraint system conditions. The mechanical behavior of assembly ducts related to several design parameters are evaluated. ACLP(Above Core Load Pad) positions, the gap distance between the ducts, and the gap distance between the duct and restraint ring were selected as the sensitivity parameter for the evaluation of duct deflection.

  • PDF

Numerical Analysis on the Behavior of the Earth Tunnel due to Supporting Methods (지보공법에 따른 토사터널의 거동에 관한 수치해석)

  • Kim, Jin-Tae;Park, Byung-Soo;Jeong, Gil-Soo;Yoo, Nam-Jea
    • Journal of Industrial Technology
    • /
    • v.24 no.A
    • /
    • pp.239-250
    • /
    • 2004
  • Numerical analysis were performed to investigate the stability and internal movement of tunnel located beneath the base of abutment of bridge according to the method of supporting tunnel. Two supporting methods of the multi-staged grouting method with steel pipes and the large diameter of pipe supporting method were used in the centrifuge model tests. The slip form of model lining, specially built to simulate the process of tunnel excavating under the condition of accelerated g-level, was used in the centrifuge model tests. Four centrifuge model tests were performed, changing the supporting methods of the multi-staged grouting method with steel pipes and the large diameter of pipe supporting method and the location of model abutment base of bridge. For internal displacement of tunnel, movements of the crown. The left and the right sides of spring line were measured during the proceeds of excavating tunnel in centrifuge model tests. Test results were compared with numerically estimated values of internal displacement of tunnel by using the commercially available FEM software of PENTAGON-3D. It was found that they were in good agreements and the large diameter of pipe supporting method was more stable than the multi-staged grouting method with steel pipes with respect to the internal movement of tunnel.

  • PDF

Asymmetric Creep Behavior of Ceramics (세라믹의 비대칭 크리프 거동)

  • Lim, H.J.;Jung, J.W.;Han, D.B.;Kim, K.T.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.10
    • /
    • pp.3105-3112
    • /
    • 1996
  • Asymmetric creep behaviors of ceramics under high temperature were investigated. Based on the Norton's power-low creep equation, multidirectional creep equations were proposed for general geometric loading conditions. The proposed equations were implemented into finite element program (ABAQUS) to simulate creep behaviors of ceramics in complicated loading conditions. The calculated results were compared with experimental data for uniaxial compression of Si-SiC C-ring and flexure of Si-SiC and $Al_2O_3$ in the literature. The finite element results agreed well with experimental data when the principal stresses are smaller than the threshold stress for creep damage. A good agreement was also obtained for damage zone in Si-SiC bending creep specimen compared with experimental data.