• Title/Summary/Keyword: 3-D FEM

Search Result 930, Processing Time 0.025 seconds

Numerical simulation and analytical assessment of STCC columns filled with UHPC and UHPFRC

  • Nguyen, Chau V.;Le, An H.;Thai, Duc-Kien
    • Structural Engineering and Mechanics
    • /
    • v.70 no.1
    • /
    • pp.13-31
    • /
    • 2019
  • A nonlinear finite element model (FEM) using ATENA-3D software to simulate the axially compressive behavior of circular steel tube confined concrete (CSTCC) columns infilled with ultra high performance concrete (UHPC) was presented in this paper. Some modifications to the material type "CC3DNonlinCementitious2User" of UHPC without and with the incorporation of steel fibers (UHPFRC) in compression and tension were adopted in FEM. The predictions of utimate strength and axial load versus axial strain curves obtained from FEM were in a good agreement with the test results of eighteen tested columns. Based on the results of FEM, the load distribution on the steel tube and the concrete core was derived for each modeled column. Furthermore, the effect of bonding between the steel tube and the concrete core was clarified by the change of friction coefficient in the material type "CC3DInterface" in FEM. The numerical results revealed that the increase in the friction coefficient leads to a greater contribution from the steel tube, a decrease in the ultimate load and an increase in the magnitude of the loss of load capacity. By comparing the results of FEM with experimental results, the appropriate friction coefficient between the steel tube and the concrete core was defined as 0.3 to 0.6. In addition to the numerical evaluation, eighteen analytical models for confined concrete in the literature were used to predict the peak confined strength to assess their suitability. To cope with CSTCC stub and intermediate columns, the equations for estimating the lateral confining stress and the equations for considering the slenderness in the selected models were proposed. It was found that all selected models except for EC2 (2004) gave a very good prediction. Among them, the model of Bing et al. (2001) was the best predictor.

A Study on Dowel-Bar Behavior of Jointed Concrete Pavement Using 3-D FEM Analysis (3차원 유한요소해석을 이용한 줄눈콘크리트 포장의 다웰바 거동에 대한 연구)

  • Hong, Seong-Jae;Yune, Chan-Young;Lee, Seung-Woo;Kim, Yeon-Bok
    • International Journal of Highway Engineering
    • /
    • v.11 no.4
    • /
    • pp.79-85
    • /
    • 2009
  • Dowel-bar in the jointed concrete pavement has been designed and constructed by Foreign standard and experience in Korea. Timoshenko solution was evaluated for dowel bar design. However, various assumptions, Timoshenko solution evaluated only single dowel bar. Therefore, This study object is evaluated the guide line dowel size and arrangement that using the 3Dimensional Finite Element Method. Dowel bar behavior, Timoshenko solution and 3D FEM estimated used result. Dowel allowable stress and Friberg bearing stress estimated using result. The effects of Dowel Group Action were analyzed using Timoshenko range and Friberg range and 3D FEM.

  • PDF

Design of 7 Bands LTCC Front-end Module Embedded LPF (LPF 내장형 7중 대역 LTCC 프런트엔드모듈 설계)

  • Kim, Hyung-Eun;Suh, Young-Kwang;Kim, In-Bae;Mun, Je-Do;Lee, Moon-Que
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.3
    • /
    • pp.427-432
    • /
    • 2012
  • In this paper, we have designed and fabricated 7-bands (GSM 850/900, DCS/PCS, and UMTS 3 bands) LTCC front end module (FEM) embedded LPF (low pass filter) to efficiently eliminate harmonics generated in TX path. The proposed FEM is composed of flip-chip typed CMOS SP9T switch to select transceiver signals, dual type SAW filters to receive Rx signals, and 0603 size chip components for the antenna matching and ESD protection. The whole size of FEM is $4.5{\times}3.2{\times}1.2mm^3$. The insertion loss of Tx and Rx ports are measured at 1.7 dB and 4.8 dB, respectively.

Design of MCCB Instant Trip Spring by 3D FEM Analysing (3D FEM 해석을 이용한 배선용 차단기의 순시트립부 설계)

  • Kang, Jong-Sung;Song, Hee-Chan;Choe, Jong-Woong
    • Proceedings of the KIEE Conference
    • /
    • 1998.07a
    • /
    • pp.134-136
    • /
    • 1998
  • When a MCCB Instant trip spring which is adjusted to notrip at -20% of each current from $5{\times}In$ to $10{\times}In$ and trip +20% of those is designed, we should know attraction force between Fixed Magnet and Armature. So we first made some samples, do experiments of weight, and simulated the modelling by 3D Maxwell S/W. With values of experiment and simulated values, we do design instant trip springs and repeat the above process. Finally we set up the Process of designing Instant spring. With it, we can save time and R&D cost.

  • PDF

Analysis of Flux Distribution in 2 Phase 8 Pole HB type LPM by 3D FEM (3차원 유한요소법에 의한 2상 8극 HB형 LPM의 가동자의 자속분포 해석)

  • Lee, Dong-Ju;Lee, Eun-Woong;Kim, Sung-Hun;Kim, Sung-Jong
    • Proceedings of the KIEE Conference
    • /
    • 1999.07a
    • /
    • pp.34-36
    • /
    • 1999
  • 2 phase 8 pole HB type LPM(linear pulse motor) has the suitable structure for it's microstep drive. Hence, if this LPM will be drived by this method, the limited(mechanically) step resolution can be increased further and vibration and noise can be decreased considerably. But, It is difficult that this LPM was analyzed in detail because of it's complex magnetic circuits to be composed the LF(longitudinal flux) and TF(transverse flux.) path. If LPM was analyzed by the approximate 2D model, we could not be obtained satisfactory result. Therefore, It is necessary to be analyzed the 3D model in detail for the more satisfactory results. In this paper, we obtain 3D flux distribution of the mover using by 3D FEM(finite element method)

  • PDF

Application of Patient-Specific 3D-Printed Orthopedic Splint for Bone Fracture in Small Breed Dogs

  • Kwangsik Jang;Eun Joo Jang;Yo Han Min;Kyung Mi Shim;Chunsik Bae;Seong Soo Kang;Se Eun Kim
    • Journal of Veterinary Clinics
    • /
    • v.40 no.4
    • /
    • pp.268-275
    • /
    • 2023
  • In this paper, we designed 3D-printed orthopedic splint models for patient-specific external coaptation on fracture healing and analyzed the stability of the models through finite element method (FEM) analysis under compressive load conditions. Polylactic acid (PLA) and acrylonitrile-butadiene-styrene (ABS) based 3D splint models of the thicknesses 1, 3, 5 and 7 mm were designed, and Peak von Mises stress (PVMS) and maximum displacement (MD) of the models were analyzed by FEM under compressive loads of 50, 100, 150, and 200 N. The FEM results indicated that PVMS and MD values, regardless of material, had a negative correlation with the thickness of the models and a positive correlation with the compressive load. There was a risk of splint deformation under conditions more extreme than 100 N with 5 mm thickness. For successful clinical application of 3D-printed orthopedic splints in veterinary medicine, it is recommended that the splint should be produced not less than 5 mm thickness. Also, it is expected to be stable when the splint is applied to situations with a compressive load of 100 N or less. There is an advantage of overcoming the limitations of the existing bandage method through 3D-printing technology as well as verifying the stability through 3D modeling before application. Such 3D printing technology will be widely used in veterinary medicine and various fields as well as orthopedics.

3-D FEM Analysis of Forming Process for Laser Welded Blank Considering Welded Zone (용접부를 고려한 레이저 합체박판 성형공정의 3차원 유한요소 해석)

  • 금영탁
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03a
    • /
    • pp.14-17
    • /
    • 1999
  • The finite element formulation is developed for predicting strain distributions and weld line movements in the forming processes of laser welded blank. The welded zone(WZ) is modelled with several narrow finite elements whose material characteristics are analytically obtained from those of base metals based on the tensile tests. In order to show the reliability and effectiveness of weld element the forming process of hemispherical dome stretching and auto-body door inner panel stamping are simulated FEM predictions show good agreements with experimental observations.

  • PDF

Torque Calculation Method of a Permanent Magnet Spherical Motor

  • Lee, Hyung-Woo;Kang, Dong-Woo;Lee, Ju
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.3
    • /
    • pp.431-434
    • /
    • 2010
  • This paper presents the torque calculation method of a permanent magnet spherical motor. To calculate using the finite element method (FEM), three-dimensional (3D) FEM must be used. However, since the method requires excessive time and memory, an easier torque calculation method is hereby presented. In the proposed method, it is very important to obtain the approximation function of the torque profile curve. We present the approximation method of the torque profile curve and show that the torque calculation result can approximate the torque obtained by 3-D FEM.

The Assesment of Tunnelling Induced Damage for the Opera House (Emphasis on 3D FEM Analysis) (터널 시공에 따른 오페라극장의 영향평가 (수치해석을 중심으로))

  • Hwang, Eui-Seok;Lee, Bong-Youl;Kim, Hak-Moon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.4 no.1
    • /
    • pp.3-12
    • /
    • 2002
  • This research work is to investigate influences of the Opera House in Arts Center caused by the twin tunnel construction. The Opera House of 3D structural feature with various type of foundations and adjacent twin tunnels are modeled in 3-Dimensional mesh for FEM analysis. Confirmation of safety is essential for this particular type of structure, and attention level and warning level of control criteria are examined for the protection of the Opera House by means of the analytical results.

  • PDF

Seismic Response Evaluation of NPP Structures Considering Different Numerical Models and Frequency Contents of Earthquakes (다양한 수치해석 모델과 지진 주파수 성분을 고려한 원전구조물의 지진 응답 평가)

  • Thusa, Bidhek;Nguyen, Duy-Duan;Park, Hyosang;Lee, Tae-Hyung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.1
    • /
    • pp.63-72
    • /
    • 2020
  • The purpose of this study is to investigate the effects of the application of various numerical models and frequency contents of earthquakes on the performances of the reactor containment building (RCB) in a nuclear power plant (NPP) equipped with an advanced power reactor 1400. Two kinds of numerical models are developed to perform time-history analyses: a lumped-mass stick model (LMSM) and a full three-dimensional finite element model (3D FEM). The LMSM is constructed in SAP2000 using conventional beam elements with concentrated masses, whereas the 3D FEM is built in ANSYS using solid elements. Two groups of ground motions considering low- and high-frequency contents are applied in time-history analyses. The low-frequency motions are created by matching their response spectra with the Nuclear Regulatory Commission 1.60 design spectrum, whereas the high-frequency motions are artificially generated with a high-frequency range from 10Hz to 100Hz. Seismic responses are measured in terms of floor response spectra (FRS) at the various elevations of the RCB. The numerical results show that the FRS of the structure under low-frequency motions for two numerical models are highly matched. However, under high-frequency motions, the FRS obtained by the LMSM at a high natural frequency range are significantly different from those of the 3D FEM, and the largest difference is found at the lower elevation of the RCB. By assuming that the 3D FEM approximates responses of the structure accurately, it can be concluded that the LMSM produces a moderate discrepancy at the high-frequency range of the FRS of the RCB.