• 제목/요약/키워드: 3-D Braided Composites

검색결과 17건 처리시간 0.02초

3차원 브레이드 유리섬유/에폭시 복합재료의 열전도도 예측에 관한 연구 (Prediction of Thermal conductivities of 3-D braided glass/epoxy composites using a thermal-electrical analogy)

  • 정혁진;강태진;윤재륜
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 추계학술발표대회 논문집
    • /
    • pp.52-55
    • /
    • 2002
  • This paper examines the effective thermal conductivity of 3-D braided glass/epoxy composites. 3-D braided composites have a number of advantage over conventional laminate composites, including through-thickness reinforcement, and high damage tolerance and processability. The thermal properties of composites depend primarily on the microstructure of the braided preform and properties of constituent materials. A thermal resistance network model based on structure of the braided preform is proposed by using thermal-electrical analogy. In order to affirm the applicability theses solutions, thermal conductivities of 3-D braided glass/epoxy composites are measured

  • PDF

셀 방법을 이용한 3차원 원형 브레이드 유리 섬유 강화 복합 재료의 구성 방정식 (Constitutive Equations for Three Dimensional Circular Braided Glass Fiber Reinforced Composites Using Cell Modeling Method)

  • 이원오;정관수
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2003년도 추계학술발표대회 논문집
    • /
    • pp.71-74
    • /
    • 2003
  • The cell modeling homogenization method to derive the constitutive equation considering the microstructures of the fiber reinforced composites has been previously developed for composites with simple microstructures such as 2D plane composites and 3D rectangular shaped composites. Here, the method has been further extended for 3D circular braided composites, utilizing B-spline curves to properly describe the more complex geometry of 3D braided composites. For verification purposes, the method has been applied for orthotropic elastic properties of the 3D circular braided glass fiber reinforced composite, in particular for the tensile property. Prepregs of the specimen have been fabricated using the 3D braiding machine through RTM (resin transfer molding) with epoxy as a matrix. Experimentally measured uniaxial tensile properties agreed well with predicted values obtained fer two volume fractions.

  • PDF

하이브리드 삼차원 브레이딩 복합재료의 기하학적 모델링 (Geometrical Modeling for Hybrid 3-D Braided Composites)

  • 한문희;강태진;윤재륜
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2003년도 추계학술발표대회 논문집
    • /
    • pp.67-70
    • /
    • 2003
  • To develop an effective geometric modeling is essential in order that precise mechanical properties and the geometrical properties of the 3-D braided composites can be estimated. RVE(representative volume element) was adopted fur geometrical modeling. RVE consisted of IC(inner unit cell), ISUC(interior surface unit cell) and ESUC(exterior surface unit cell). The whole geometrical model fur hybrid 3-D braided composites was developed.

  • PDF

Constitutive Equations Based on Cell Modeling Method for 3D Circular Braided Glass Fiber Reinforced Composites

  • Lee, Wonoh;Kim, Ji Hoon;Shin, Heon-Jung;Chung, Kwansoo;Kang, Tae Jin;Youn, Jae Ryoun
    • Fibers and Polymers
    • /
    • 제4권2호
    • /
    • pp.77-83
    • /
    • 2003
  • The cell modeling homogenization method to derive the constitutive equation considering the microstructures of the fiber reinforced composites has been previously developed for composites with simple microstructures such as 2D plane composites and 3D rectangular shaped composites. Here, the method has been further extended for 3D circular braided com-posites, utilizing B-spline curves to properly describe the more complex geometry of 3D braided composites. For verification purposes, the method has been applied for orthotropic elastic properties of the 3D circular braided glass fiber reinforced com-posite, in particular for the tensile property. Prepregs of the specimen have been fabricated using the 3D braiding machine through RTM (resin transfer molding) with epoxy as a matrix. Experimentally measured uniaxial tensile properties agreed well with predicted values obtained for two volume fractions.

2-D Braided Textile 금속복합재료의 성형과 특성 해석 (Fabrication and Analytical Characterization of 2-D Braided Textile Metal Matrix Composites)

  • 이상관;김효준;변준형;홍순형
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2001년도 춘계학술발표대회 논문집
    • /
    • pp.38-41
    • /
    • 2001
  • A new 2-D braided textile metal matrix composite was developed and characterized. The constituent materials consist of PAN type carbon fiber as reinforcements and pure aluminum as matrices. The braided preforms of different braider yarn angles were fabricated. For a fixed bundle size of 12K, three braider yarn angles was selected: $30^{\circ}$, $45^{\circ}$, and $60^{\circ}$. The braided preforms were infiltrated with pure Al by vacuum assisted squeeze casting. Through the investigation of melt pressing methods and the effects of process parameters such as applied pressure, and pouring temperature, the optimal process conditions were identified as follows: applied pressure of 60MPa, pouring temperature of $800^{\circ}C$. Using the measured geometric parameters, 3-D engineering constants of metal matrix composites have been determined from the elastic model, which utilizes the coordinate transformation and the averaging of stiffened and compliance constants based upon the volume of each reinforcement and matrix material.

  • PDF

삼차원 평판형태 브레이딩 복합재료의 강성해석 (The mechanical analysis of 3-D flat board shaped braided composites)

  • 김성준;강태진;정관수;윤재륜
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 추계학술발표대회 논문집
    • /
    • pp.114-117
    • /
    • 2002
  • To develop an effective geometric modeling is essential in order that precise material properties of the 3-D braided composite can be estimated. in this study RVE(representative volume element) which is the smallest volume element representing whole material properties is developed to estimate the mechanical properties of 3-D flat board shaped braided composite using volume averaging method.

  • PDF

3차원 2-Step Braided 복합재료의 탄성 계수 예측 (Elastic Properties of 2-Step Braided Composites)

  • 변준형
    • 연구논문집
    • /
    • 통권23호
    • /
    • pp.45-56
    • /
    • 1993
  • In order to acquire more comprehensive understanding of textile composites, the processing-microstructure-performance relationships for a variety of material systems, reinforcing schemes and processing technologies should be established. In this paper, emphasis is placed on the integrated analysis of three-dimensional (3-D) 2-step braided composites. The analysis includes the geometric model of unit cells, identification of key process parameters and processing windows due to limiting geometries of yarn jamming, and prediction of elastic constants of the composite. The coordinate transformation and averaging of stiffness and compliance constants are utilized in the prediction of elastic constants. Since there are several types of unit cells in the thickness and width directions of the composites, characterization of mechanical properties is based upon the macro-cell, which occupies the entire cross-section and the unit pitch length of the sample. The performance map demonstrates that a wide range of elastic properties can be achieved by varying the geometric and process parameters.

  • PDF

셀방법과 유한요소법을 이용한 하이브리드 삼차원 브레이드 섬유강화복합재료의 역학적 성질 예측 (Prediction of Mechanical Properties of Hybrid 3D Braided Fiber Reinforced Composites Using Method of Cells and Finite Element Method)

  • 김지훈;류한선;이명한;정관수
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2004년도 추계학술발표대회 논문집
    • /
    • pp.151-154
    • /
    • 2004
  • A procedure of predicting mechanical properties of braided composites was developed. Mechanical behaviors of yams and resin in the composites were represented by elastoplastic constitutive relations. The mechanical properties of the hybrid braided composites were calculated using Method of cells and finite element method. Predictions of finite element method showed good agreement with experimental data but Method of cells predicted lower values than those of the experiment.

  • PDF

유리/에폭시 3차원 브레이드 복합재료의 저속 충격 에너지 흡수기구 (Energy Absorption Mechanism of Glass/Epoxy 3-D braided structure in Low Velocity Impact Test)

  • 주기호;설인환;김수창;강태진
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2004년도 추계학술발표대회 논문집
    • /
    • pp.167-170
    • /
    • 2004
  • In order to investigate the impact behaviors of 3-D braided glass/epoxy composites, the energy profiles and damage area were compared to the laminates of similar volume fraction and composition. The energy profiles showed different characteristics from each other which indicates they have distict energy absorption mechanisms. The image analysis on the damage projections visualized the crack propagation paths along the fiber direction.

  • PDF

탄소성 구성 방정식을 이용한 삼차원 브레이드 복합재료의 역학적 해석 (Mechanical Analysis of 3D Circular Braided Glass Fiber Reinforced Composites Using Elastic-Plastic Constitutive Equations)

  • 류한선;이명규;김지훈;정관수
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2004년도 추계학술발표대회 논문집
    • /
    • pp.147-150
    • /
    • 2004
  • In order to describe the mechanical behavior of highly anisotropic and asymmetric materials such as fiber­reinforced composites, the elastic-plastic constitutive equations were used here based on the recently developed yield criterion and hardening laws. As for the yield criterion, modified Drucker-Prager yield surface was used to represent the orthotropic and asymetric properties of composite materials, while the anisotropic evolution of back­stress was accounted for the hardening behavior. Experimental procedures to obtain the material parameters of the hardening laws and yield surface are presented for 3D Circular Braided Glass Fiber Reinforced Composites. For verification purpose, comparisons of finite element simulations using the elastic-plastic constitutive equations, anisotropic elastic constitutive equations and experiments were performed for the three point bending tests. The results of finite element simulations showed good agreements with experiments, especially for the elastic-plastic constitutive equations with yield criterion considering anisotropy as well as asymmetry and anisotropic back stress evolution rule.

  • PDF