• Title/Summary/Keyword: 3-D Analytical Method

Search Result 485, Processing Time 0.021 seconds

An Efficient Design for an Ultra-Wideband Microstrip-to-CPS Transition Applicable to Millimeter-Wave Systems (밀리미터파 시스템에 적용 가능한 초광대역 마이크로스트립-CPS 전이구조 설계)

  • Kim, Young-Gon;Kim, Youn-Jin;Kim, Kang Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.3
    • /
    • pp.268-275
    • /
    • 2015
  • A clear and efficient design method for ultra-wideband microstrip-to-coplanar stripline(CPS) transition, which is based on the analytical expressions of the whole transitional structure, is presented. The conformal mapping is applied to obtain the characteristic impedance of the transitional structure within 3.2 % accuracy as compared with the EM-simulation results. The transition is designed to provide broadband impedance matching using Klopfenstein taper. The implemented transition performs less than 1 dB insertion loss per transition for frequencies from 5.39~40 GHz.

Low-power heterogeneous uncore architecture for future 3D chip-multiprocessors

  • Dorostkar, Aniseh;Asad, Arghavan;Fathy, Mahmood;Jahed-Motlagh, Mohammad Reza;Mohammadi, Farah
    • ETRI Journal
    • /
    • v.40 no.6
    • /
    • pp.759-773
    • /
    • 2018
  • Uncore components such as on-chip memory systems and on-chip interconnects consume a large amount of energy in emerging embedded applications. Few studies have focused on next-generation analytical models for future chip-multiprocessors (CMPs) that simultaneously consider the impacts of the power consumption of core and uncore components. In this paper, we propose a convex-optimization approach to design heterogeneous uncore architectures for embedded CMPs. Our convex approach optimizes the number and placement of memory banks with different technologies on the memory layer. In parallel with hybrid memory architecting, optimizing the number and placement of through silicon vias as a viable solution in building three-dimensional (3D) CMPs is another important target of the proposed approach. Experimental results show that the proposed method outperforms 3D CMP designs with hybrid and traditional memory architectures in terms of both energy delay products (EDPs) and performance parameters. The proposed method improves the EDPs by an average of about 43% compared with SRAM design. In addition, it improves the throughput by about 7% compared with dynamic RAM (DRAM) design.

The Cubic-Interpolated Pseudo-Particle Lattice Boltzmann Advection-Diffusion Model (이류확산 방정식 계산을 위한 입방보간유사입자 격자볼츠만 모델)

  • Mirae, Kim;Binqi, Chen;Kyung Chun, Kim
    • Journal of the Korean Society of Visualization
    • /
    • v.20 no.3
    • /
    • pp.74-85
    • /
    • 2022
  • We propose a Cubic-Interpolated Pseudo-Particle Lattice Boltzmann method (CIP-LBM) for the convection-diffusion equation (CDE) based on the Bhatnagar-Gross-Krook (BGK) scheme equation. The CIP-LBM relies on an accurate numerical lattice equilibrium particle distribution function on the advection term and the use of a splitting technique to solve the Lattice Boltzmann equation. Different schemes of lattice spaces such as D1Q3, D2Q5, and D2Q9 have been used for simulating a variety of problems described by the CDE. All simulations were carried out using the BGK model, although another LB scheme based on a collision term like two-relation time or multi-relaxation time can be easily applied. To show quantitative agreement, the results of the proposed model are compared with an analytical solution.

3-D Core Loss Calculation in BLDC Motor having Overhang made of SMC Material. (오버행을 가지는 SMC재질을 이용한 BLDC전동기의 3차원 철손 해석)

  • Lee Sang-Ho;Lee Ji-Young;Nam Hyuk;Hong Jung-Pyo;Hur Jin;Sung Ha-Kyung
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1043-1045
    • /
    • 2004
  • This paper deals with the core loss calculation of a BLDC motor made of Soft Magnetic Composite material. Since the teeth of motor partially have overhang in axial direction, 3 - dimensional equivalent magnetic circuit network (3D-EMCN) is used as an analytical method to get flux density of each element. The total core loss is calculated with the magnetic flux density and core loss curves of the SMC material. The calculated result is compared with core loss of the motor without overhang in stator teeth.

  • PDF

Analysis of a three-dimensional FEM model of a thin piezoelectric actuator embedded in an infinite host structure

  • Zeng, Xiaohu;Yue, Zhufeng;Zhao, Bin;Wen, S.F.
    • Advances in materials Research
    • /
    • v.3 no.1
    • /
    • pp.237-257
    • /
    • 2014
  • In this paper, we adopted a two-dimensional analytical electro-elastic model to predict the stress distributions of the piezoelectric actuator in 3D case. The actuator was embedded in an elastic host structure under electrical loadings. The problem is reduced to the solution of singular integral equations of the first kind. The interfacial stresses and the axial normal stress in both plane stress state and plane strain state were obtained to study the actuation effects being transferred from the actuator to the host. The stress distributions of the PZT actuator in different length and different thickness were analyzed to guarantee the generality. The validity of the present model has been demonstrated by application of specific examples and comparisons with the corresponding results obtained from the Finite Element Method.

Magnetic Field Distribution Analysis of Superconducting Niobium Foil of Linear Type Magnetic Flux Pump using Simulation (시뮬레이션을 이용한 리니어형 자속 플럭스 펌프에서의 초전도 니오븀 박막의 자장분포 해석)

  • Lee, Eung-Ro;Chung, Yoon-Do;Bae, Duck-Kweon;Yoon, Yong-Soo;Ko, Tae-Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.11 no.3
    • /
    • pp.60-64
    • /
    • 2009
  • We investigated an operating characteristic of linear-type magnetic flux pump (LTMFP) as a current compensator under the various conditions. In order to explain the mechanism of the LTMFP, the magnetic behavior of superconducting Nb foil according to pumping actions should be understood. In this paper, the magnetic field analysis of superconducting Nb foil installed in LTMFP has been performed based on the three-dimensional finite element method (3D FEM). Through the simulation analysis, the normal spot region on the superconducting Nb foil is found to be enhanced swiftly over about 20 Hz. The simulated finding agreed with an analytical estimation based on the phenomenon of magnetic diffusion.

DEVELOPMENT OF A PRECONDITIONED ADJOINT METHOD FOR ALL-SPEED FLOW ANALYSES OF QUASI ONE-DIMENSIONAL EULER EQUATIONS (준 일차원 Euler 방정식의 전속도 유동해석을 위한 예조건화 수반변수 기법의 개발)

  • Lee, H.R.;Lee, S.
    • Journal of computational fluids engineering
    • /
    • v.20 no.3
    • /
    • pp.27-34
    • /
    • 2015
  • In this study, preconditioned adjoint equations for the quasi one-dimensional Euler equations are developed, and their computational benefit at all speed is assessed numerically. The preconditioned adjoint equations are derived without any assumptions on the preconditioning matrix. The dissipation for Roe type numerical flux is also suggested to scale the dissipation term properly at low Mach numbers as well as at high Mach numbers. The new preconditioned method is validated against analytical solutions. The convergence characteristics over wide range of Mach numbers is evaluated. Finally, several inverse designs for the nozzle are conducted and the applicability of the method is demonstrated.

Probabilistic tunnel face stability analysis: A comparison between LEM and LAM

  • Pan, Qiujing;Chen, Zhiyu;Wu, Yimin;Dias, Daniel;Oreste, Pierpaolo
    • Geomechanics and Engineering
    • /
    • v.24 no.4
    • /
    • pp.399-406
    • /
    • 2021
  • It is a key issue in the tunnel design to evaluate the stability of the excavation face. Two efficient analytical models in the context of the limit equilibrium method (LEM) and the limit analysis method (LAM) are used to carry out the deterministic calculations of the safety factor. The safety factor obtained by these two models agrees well with that provided by the numerical modelling by FLAC 3D, but consuming less time. A simple probabilistic approach based on the Mote-Carlo Simulation technique which can quickly calculate the probability distribution of the safety factor was used to perform the probabilistic analysis on the tunnel face stability. Both the cumulative probabilistic distribution and the probability density function in terms of the safety factor were obtained. The obtained results show the effectiveness of this probabilistic approach in the tunnel design.

Determination of meloxicam in human plasma by semi-micro high-performance liqiud chromatography.

  • Park, Chang-Hun;Kim, Ho-Hyun;Lee, Hee-Joo;Beom, Han-Sang
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.276.1-276.1
    • /
    • 2003
  • This study describes a simple and sensitive semi-micro HPLC method with UV detection and direct deproteinization. The plasma protein was precipitated using perchloric acid (60%) and the supernatant was directly injected onto the semi-micro HPLC system. The separation was achieved on a C18 (25 mm ${\times}$ 2.0 mm I.D) analytical column with a mobile phase of sodium acetate buffer (pH 3.5, 50 mmol) - acetonitrile (60:40, V/V). (omitted)

  • PDF

A General approach to the wrinkling instability of sandwich plates

  • Vonach, Walter K.;Rammerstorfer, Franz G.
    • Structural Engineering and Mechanics
    • /
    • v.12 no.4
    • /
    • pp.363-376
    • /
    • 2001
  • Sandwich plates are widely used in lightweight design due to their high strength and stiffness to weight ratio. Due to the heterogeneous structure of sandwich plates, they can exhibit local instabilities (wrinkling), which lead to a sudden loss of stiffness in the structure. This paper presents an analytical solution to the wrinkling problem of sandwich plates. The solution is based on the Rayleigh-Ritz method, by assuming an appropriate deformation field. In contrast to the other approaches up to now, this model takes arbitrary and different orthotropic face layers, finite core thickness and orthotropic core material into account. This approach is the first to cover the wrinkling of unsymmetric sandwiches and sandwiches composed of orthotropic FRP face layers, which are most common in advanced lightweight design. Despite the generality of the solution, the computational effort is kept within bounds. The results have been verified using other analytical solutions and unit cell 3D FE calculations.