• Title/Summary/Keyword: 3-D Analysis

Search Result 16,844, Processing Time 0.053 seconds

Study on the Flow Characteristics at Natural Curved Channel by 2D and 3D Models (2·3차원 모형을 이용한 자연하도 만곡부에서의 흐름특성 연구)

  • Ahn, Seung-Seop;Jung, Do-Joon;Lee, Sang-Il;Kim, Wi-Seok
    • Journal of Environmental Science International
    • /
    • v.21 no.4
    • /
    • pp.471-478
    • /
    • 2012
  • In this study, the flow characteristic analysis at the curved-channel of the actual channel section is compared and reviewed using the 2D RMA-2 model and the 3D FLOW-3D model. the curve section with curve rate 1.044 in the research section is analyzed applying the frequency of he project flood of 100 years. According to the result, the issue for the application of the FLOW-3D Model's three-dimensional numeric analysis result to the actual river is found to be reviewed with caution. Also, application of the 3D model to the wide basin's flood characteristic is determined to be somewhat risky. But, the applicability to the hydraulic property analysis of a partial channel section and the impact analysis and forecast of hydraulic structure is presumed to be high. In addition, if the parameters to reflect the vegetation of basin and the actual channel, more accurate topological measurement data and the topological data with high closeness to the current status are provided, the result with higher reliability is considered to be drawn.

Pushover Analysis of Bearing Wall System with Macroscopic Models - For Comparisons of 2D and 3D Analysis Modelling (거시적 모델을 이용한 내력벽 시스템의 Pushover 해석 - 2차원과 3차원 해석 모델링의 비교)

  • Lee, Young-Wook
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.329-332
    • /
    • 2006
  • To study the effect of the macroscopic TVLEM(Three Vertical Line Element Model) which is developed in 2D, a bearing wall system is selected and 2D and 3D pushover analyses are carried out. In 2D model, the participating width of a flage wall to lateral resistance is modelled based on Paulay's effective width. From the comparisons of roof displacements, 2D model which uses the effective width of flange wall has better prediction and less analysis time than 3D model which has intrinsically the full width of the flange that causes higher stiffness and strength and shorter deformation capacity than 2D model.

  • PDF

Influence of Two-Dimensional and Three-Dimensional Acquisitions of Radiomic Features for Prediction Accuracy

  • Ryohei Fukui;Ryutarou Matsuura;Katsuhiro Kida;Sachiko Goto
    • Progress in Medical Physics
    • /
    • v.34 no.3
    • /
    • pp.23-32
    • /
    • 2023
  • Purpose: In radiomics analysis, to evaluate features, and predict genetic characteristics and survival time, the pixel values of lesions depicted in computed tomography (CT) and magnetic resonance imaging (MRI) images are used. CT and MRI offer three-dimensional images, thus producing three-dimensional features (Features_3d) as output. However, in reports, the superiority between Features_3d and two-dimensional features (Features_2d) is distinct. In this study, we aimed to investigate whether a difference exists in the prediction accuracy of radiomics analysis of lung cancer using Features_2d and Features_3d. Methods: A total of 38 cases of large cell carcinoma (LCC) and 40 cases of squamous cell carcinoma (SCC) were selected for this study. Two- and three-dimensional lesion segmentations were performed. A total of 774 features were obtained. Using least absolute shrinkage and selection operator regression, seven Features_2d and six Features_3d were obtained. Results: Linear discriminant analysis revealed that the sensitivities of Features_2d and Features_3d to LCC were 86.8% and 89.5%, respectively. The coefficients of determination through multiple regression analysis and the areas under the receiver operating characteristic curve (AUC) were 0.68 and 0.70 and 0.93 and 0.94, respectively. The P-value of the estimated AUC was 0.87. Conclusions: No difference was found in the prediction accuracy for LCC and SCC between Features_2d and Features_3d.

Analysis of 3D Microwave Oven Using Finite Element Method (전자렌지 캐비티의 전자파 해석)

  • Park, Kweong-Soo;Kim, Gweon-Jib;Shon, Jong-Chull;Kim, Sang-Gweon;Park, Yoon-Ser
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1753-1755
    • /
    • 1996
  • This paper presents an analysis of the 3D microwave oven considering its forming. The results were compared with experimental data. Finite Element Method(FEM) using edge clement is employed for the analysis. For solving the large sparse system matrix equation was solved using the parallelized QMR method. Analysis of the 3d cavity has troublesome difficulties such as spurious solutions, too many memory and long computation time. We overcome this difficulties by using edge clement for spurious solutions and the parallelized QMR method by the aid of Paralle Virtual Machine(PVM) for the memory and computation time.

  • PDF

Empirical Analysis of the Effect of 3D Avatars on Consumer's Online Purchasing Behavior in Virtual World : Emphasis on Trust Transference (가상세계에서 3차원 아바타 판매원이 소비자 온라인 구매 행위에 미치는 영향에 관한 실증연구 : 신뢰전이를 중심으로)

  • Chae, Seong-Wook;Lee, Kun-Chang;Lee, Keun-Young
    • Knowledge Management Research
    • /
    • v.10 no.3
    • /
    • pp.153-173
    • /
    • 2009
  • Virtual world typically characterized by Second Life (www.secondlife.com) has been successfully drawing a great deal of potential users all around the world. Attention towards 3D avartars has been increasing exponentially especially in the electronic commerce world. 3D avatars have firm position in the virtual world. This study is launched to explore this research void in which trust transference from 3D-avatars-sales representative to customers purchase intention will be especially analyzed on. To perform experiments, a research model was built in a form of path analysis. Two types of 3D avatars were designed and implemented-at-tractive type and professional type. Questionnaire survey was adopted, and empirical analysis results were obtained from the research model. Results reveal that the proposed hypotheses are proven with statistical significance.

  • PDF

Finding Optimal Paths in Indoor Spaces using 3D GIS (3D-GIS를 이용한 건물 내부공간의 최적경로탐색)

  • Ryu Keun-Won;Jun Chul-Min;Jo Sung-Kil;Lee Sang-Mi
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2006.04a
    • /
    • pp.387-392
    • /
    • 2006
  • 3D-based information is needed increasingly as well as 2D Information as cities grow and buildings become large and complex, and use of 3D-models is getting attention to handle such problems. However, there are limitations in using 3D-models because most applications and research efforts using them have been for visual analysis. This study presents a method to find optimal paths in indoor spaces as an illustration for using 3D-models in spatial analysis. We modeled rooms, paths and other facilities in a building as individual 3D objects. We made it possible to find paths based on network structure by integrating the vector-based networks of 2D-GIS and 3D-model.

  • PDF

Technology Strategy based on Patent analysis (특허분석을 이용한 기술전략수립)

  • Kim, Jong-Chan;Lee, Joon-Hyuck;Park, Sang-Sung;Jang, Dong-Sik
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.2
    • /
    • pp.141-146
    • /
    • 2016
  • By occasion of propagation of 3D TV, technology of glassless 3D display is increasingly important. Currently, there was no lead technology In this technology. Thus it is important to develop differentiated technology for secure competitiveness. In this paper, We analyze patents for R&D strategy about glassless 3D display. Through Company-Technology matrix analysis and Patent trend analysis, We extract promising technology field and core technology. Lastly We suggest R&D strategy by using patent road map.

A Study on the Analysis and Comparison of DC Suite and CLO3D

  • Jang, Heekyung;Chen, Jianhui
    • Journal of Fashion Business
    • /
    • v.21 no.6
    • /
    • pp.87-105
    • /
    • 2017
  • In the fashion industry, 2D apparel CAD technology has already matured and various 3D apparel CADs have been introduced and are available for users. In the fourth industrial revolution era, the 3D apparel technology will be highlighted, and the research of 3D apparel CAD will be much more emphasized upon. Currently, various 3D apparel CAD have been developed and commercialized due to the rapid development of technology. However, in reality, the analysis and discussions about its problems and the improvements for clothing from a user's perspective have not been carried out yet. The purpose of this study was to provide the reference information about 3D apparel CAD for users by studying and comparing the characteristics of 3D apparel CAD. The 3D apparel CAD, DC Suite and CLO3D were selected for technical comparative study. The 3D apparel CAD mainly includes 3D body system, garment pattern system and garment simulation system and so on. It was compared and analyzed; the problem was presented, and the directions of improvement were put forth.

A Research on the Measurement of Human Factor Algorithm 3D Object (3차원 영상 객체 휴먼팩터 알고리즘 측정에 관한 연구)

  • Choi, Byungkwan
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.14 no.2
    • /
    • pp.35-47
    • /
    • 2018
  • The 4th industrial revolution, digital image technology has developed beyond the limit of multimedia industry to advanced IT fusion and composite industry. Particularly, application technology related to HCI element algorithm in 3D image object recognition field is actively developed. 3D image object recognition technology evolved into intelligent image sensing and recognition technology through 3D modeling. In particular, image recognition technology has been actively studied in image processing using object recognition recognition processing, face recognition, object recognition, and 3D object recognition. In this paper, we propose a research method of human factor 3D image recognition technology applying human factor algorithm for 3D object recognition. 1. Methods of 3D object recognition using 3D modeling, image system analysis, design and human cognitive technology analysis 2. We propose a 3D object recognition parameter estimation method using FACS algorithm and optimal object recognition measurement method. In this paper, we propose a method to effectively evaluate psychological research techniques using 3D image objects. We studied the 3D 3D recognition and applied the result to the object recognition element to extract and study the characteristic points of the recognition technology.

3D Shape Optimization of Electromagnetic Device Using Design Sensitivity Analysis and Mesh Relocation Method (설계민감도해석과 요소망 변형법을 이용한 전자소자의 3차원 형상최적화)

  • ;Yao Yingying
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.7
    • /
    • pp.307-314
    • /
    • 2003
  • This paper presents a 3D shape optimization algorithm for electromagnetic devices using the design sensitivity analysis with finite element method. The structural deformation analysis based on the deformation theory of the elastic body under stress is used for mesh renewing. The design sensitivity and adjoint variable formulae are derived for the 3D finite element method with edge element. The results of sensitivity analysis are used as the input data of the structural analysis to calculate the relocation of the nodal points. This method makes it possible that the new mesh of analysis region can be obtained from the initial mesh without regeneration. The proposed algorithm is applied to the shape optimization of 3D electromagnet pole to net a uniform flux density at the target region.