• Title/Summary/Keyword: 3-D 탄성파

Search Result 136, Processing Time 0.026 seconds

3D Seismic Data Processing Methodology using Public Domain Software System (공유 소프트웨어 시스템을 이용한 3차원 탄성파 자료처리 방법론)

  • Ji, Jun;Choi, Yun-Gyeong
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.2
    • /
    • pp.159-168
    • /
    • 2010
  • Recent trend in petroleum/gas exploration is an application of 3D seismic exploration technique. Unlike the conventional 2D seismic data processing, 3D seismic data processing is considered as the one which requires expensive commercial software systems and high performance computer. This paper propose a practical 3D seismic processing methodology on a personal computer using public domain software such as SU, SEPlib, and SEPlib3D. The applicability of the proposed method has been demonstrated by successful application to a well known realistic 3D synthetic data, SEG/EAGE 3D salt model data.

A Field Application of 3D Seismic Traveltime Tomography (II);Application of 3D Seismic Traveltime Tomography to a dam-planned area (3차원 탄성파 토모그래피의 현장 적용 (II);댐 예정지에서의 3차원 토모그래피 적용 사례)

  • Moon, Yoon-Sup;Ha, Hee-Sang;Ko, Kwang-Buem;Kim, Ji-Soo
    • Tunnel and Underground Space
    • /
    • v.18 no.4
    • /
    • pp.263-271
    • /
    • 2008
  • 3D seismic tomography technique was assessed for applicability of developed 3D tomography algorithm based on Fresnel volume in the dam-planned area. Reconstructed 3D tomogram based on Fresnel volume and Fast Marching Method(FMM) reveals similar velocity structure to the other geotechnical survey results. With the correlation analysis between RMR data and seismic velocity information, it could provide reliable information of rock mass rate. The applicability of 3D seismic tomography was verified in this study. It would be expected to apply 3D tomography with new developed first arrival calculation and inversion algorithm to the engineering field economically.

Field Application of 3D seismic travel-time tomography (3차원 탄성파 지대공 토모그래피 현장 적용)

  • Moon, Yun-Seop;Ha, Hee-Sang;Lim, Harry;Ko, Kwang-Beom
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.233-237
    • /
    • 2006
  • 3D travel time tomography was conducted to characterize the subsuface structure in the valley area. In this study, an area($200m{\times}200m$), where borehole informations were available to aid in the interpretation, was covered with wide source/receiver coverage. In data acquisition, both hole to hole and reverse VSP array was employed. For the inversion, 3D seismic traveltime tomography algorithm based on Fresnel volume was implemented. When compared 3D velocity cube with the geological survey and drilling logs, both results were matched well. From this, we concluded that 3D seismic travel time tomography has enough potential to the field application.

  • PDF

Static Correction of Land 3D Seismic Data (육상 3차원 탄성파 자료의 정보정)

  • Sheen Dong-Hoon;Park Jae-Woo;Ji Jun;Lee Doo-Sung
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.3
    • /
    • pp.145-149
    • /
    • 2002
  • The static correction, which is classified into refraction based static correction and reflection based residual static correction, removes distortions caused by irregularities of thickness or velocity in near-surface. Generally, refraction statics is a time consuming process because of high dependence on the interpreter's analysis. Therefore, for huge 3D seismic data, automatic static correction which minimizes the interpreter's analysis is required. In this research, we introduce an efficient method of refraction static correction for land 3D seismic survey.

3-D Visualization of Reservoir Characteristics through GOCAD (GOCAD를 이용한 저류층 속성정보의 3차원 시각화 연구)

  • Gwak Sang-Hwan;Lee Doo Sung
    • Geophysics and Geophysical Exploration
    • /
    • v.4 no.3
    • /
    • pp.80-83
    • /
    • 2001
  • Four seismic reflection horizons in 3-D seismic data, coherence derived from the seismic data, and 38 well logs from the Boonsville Gas Filed in Texas were tried to be integrated and visualized in 3 dimensions. Time surface was constructed from pick times of the reflection horizons. Average velocities to each horizon at 38 well locations were calculated based on depth markers from the well logs and time picks from the 3-D seismic data. The time surface was transformed to depth surface through velocity interpolation. Coherence was calculated on the 3-D seismic data by semblance method. Spatial distribution of the coherence is captured easily in 3-D visualization. Comparing to a time-slice of seismic data, distinctive stratigraphic features could be correctly recognized on the 3-D visualization.

  • PDF

A Field Application of 3D Seismic Traveltime Tomography (I) - Constitution of 3D Seismic Traveltime Tomography Algorithm - (3차원 탄성파 토모그래피의 현장 적용 (1) - 3차원 토모그래피 알고리즘의 구성 -)

  • Moon, Yoon-Sup;Ha, Hee-Sang;Ko, Kwang-Buem;Kim, Ji-Soo
    • Tunnel and Underground Space
    • /
    • v.18 no.3
    • /
    • pp.202-213
    • /
    • 2008
  • In this study, theoretical approach of 3D seismic traveltime tomography was investigated. To guarantee the successful field application of 3D tomography, appropriate control of problem associated with blind zone is pre-requisite. To overcome the velocity distortion of the reconstructed tomogram due to insufficient source-receiver array coverage, the algorithm of 3D seismic traveltime tomography based on the Fresnel volume was developed as a technique of ray-path broadening. For the successful reconstruction of velocity cube, 3D traveltime algorithm was explored and employed on the basis of 2nd order Fast Marching Method(FMM), resulting in improvement of precision and accuracy. To prove the validity and field application of this algorithm, two numerical experiments were performed for globular and layered models. The algorithm was also found to be successfully applicable to field data.

A 3 dimensional Visualization System for 3-D Seismic Data Analysis (3차원 탄성파 자료분석을 위한 3차원 시각화 시스템)

  • Lee, Doo-Sung;Kim, Hyoun-Gyu
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.2
    • /
    • pp.71-77
    • /
    • 2002
  • We developed a modeling and visualization software that can analyze 3-dimensional seismic data. The software divides 3 dimensional space into a series of vertical and horizontal polygons, and allows the various seismic attributes and other spatial information to be stored on these polygons. The program can pick a particular pattern in semi-automatic mode, and store the pattern in the spatial DB. The pattern can be modeled and visualized in 3 dimensional space.

3D Seismic Travel-time Tomography using Fresnel Volume (프레넬 볼륨을 이용한 3차원 탄성파 주시 토모그래피)

  • Ko, Kwang-Beom;Lee, Doo-Sung
    • Geophysics and Geophysical Exploration
    • /
    • v.6 no.2
    • /
    • pp.101-107
    • /
    • 2003
  • 3D seismic travel-time tomography algorithm baled on Fresnel volume was developed and its feasibility was investigated by the numerical experiments. To testify the field applicability of the developed algorithm, frequency characteristics and way coverage of the crossholel seismic raw data were investigated and 3D velocity tomogram cube with about 8m spatial resolution was obtained. When compared this 3D velocity cube with the conventional 2D ray tomogram, two results were matched well. We concluded that 3D seismic tomography algorithm developed in this study has enough potential to the field application.

Impedance Estimation from 3-D Seismic Data (3차원 탄성파로부터 매질의 임피던스 산출에 관한 연구)

  • Lee, Doo-Sung
    • Geophysics and Geophysical Exploration
    • /
    • v.3 no.1
    • /
    • pp.7-12
    • /
    • 2000
  • The paper discusses a data processing methodology that derives a three dimensional porosity volume information from the 3-D seismic dataset. The methodology consists of preprocessing and inversion procedures. The purpose of the preprocessing is balancing the amplitudes of seismic traces by using reflectivity series derived from sonic and density logs. There are eight sonic logs are available in the study area; therefore, we can compute only 8 balance functions. The balance function for every seismic trace was derived from these 8 balance functions by kriging. In order to derive a wide-band acoustic impedance --similar to the one can be derived from a sonic log- from a band-limited reflection seismogram, we need to recover missing low- and high-frequency information of the seismic trace. For that Purpose we use the autoregressive method.

  • PDF

Fusion of 3D seismic exploration and seafloor geochemical survey for methane hydrate exploration (메탄 하이드레이트 탐사를 위한 3 차원 탄성파 탐사와 해저면 지구화학탐사의 융합 기술)

  • Nagakubo, Sadao;Kobayashi, Toshiaki;Fujii, Tetsuya;Inamori, Takao
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.1
    • /
    • pp.37-43
    • /
    • 2007
  • The MH21 Research Consortium has conducted a high-resolution 3D seismic survey and a seafloor geochemical survey, to explore methane hydrate reservoirs in the eastern Nankai Trough, offshore Japan. Excellent geological information about shallow formations was obtained from the high-resolution 3D seismic survey, which was designed to image the shallow formations where methane hydrates exist. The information is useful in constructing a geological and geochemical model, and especially to understand the complex geology of seafloor, including geochemical manifestations and the structure of migration conduits for methane gas or methane-bearing fluid. By comparing methane seep sites observed by submersibles with seismic sections, some significant relationships between methane hydrate reservoirs, free gas accumulations below the seafloor, and seafloor manifestations are recognised. Bathymetric charts and seafloor reflection amplitude maps, constructed from seismic reflections from the seafloor, are also useful in understanding the relationships over a vast area. A new geochemical seafloor survey targeted by these maps is required. The relationships between methane hydrate reservoirs and seafloor manifestations are becoming clearer from interpretation of high-resolution 3D seismic data. The MH21 Research Consortium will continue to conduct seafloor geochemical surveys based on the geological and geochemical model constructed from high-resolution 3D seismic data analysis. In this paper, we introduce a basis for exploration of methane hydrate reservoirs in Japan by fusion of 3D seismic exploration and seafloor geochemical surveys.