• 제목/요약/키워드: 3-Axis milling

검색결과 74건 처리시간 0.029초

5축 CAM 가공 작업 프로세스 개선을 위한 가공 템플릿 활용 (Utilization of machining templates to improve 5-axis CAM machining process)

  • 이동천;김선용
    • Design & Manufacturing
    • /
    • 제11권1호
    • /
    • pp.45-49
    • /
    • 2017
  • Currently, a lot of efforts to make increases the manufacturing efficiency have tried and there is growing the interest to implementing the machining operation through CAM automation and optimization. This kind of movement has shown gradually in 5X milling as well as 3X milling task. By the way, in case of 5X milling, it is difficult to hire the CAM experts who is an experience for 5X machining and also it has too big trouble to use them due to high cost. For this reason, you can see the manufacturer who is concern the CAM S/W to provide the NC automation program that beginners can generate easily the 5X milling in short term and the existing 5X milling process can be improved. These requirements need to make a NC automation process including the practical machining strategies same as the generation by NC expert. In order to support this, it is necessary to directly apply the 3D machining part based on NC template which includes the machining procedures, standard cutter library, auto machine area selection, analyze tool for part shape, machining condition setting considering the material stiffness to be provided by CimatronE and it should be created the 5axis machining data by a minimized operation. With user-friendly, CimatronE's NC machining automation tools improve the 5-axis machining process and speed up the process, maximizing work efficiency and improving product productivity compared to existing machining tasks.

CNC선반 C축 밀링가공에서 표면 거칠기에 미치는 절삭조건의 영향 (Effect of Cutting Conditions on Surface Roughness in CNC Lathe C-axis Milling Cutting)

  • 신국식
    • 한국기계가공학회지
    • /
    • 제11권3호
    • /
    • pp.110-115
    • /
    • 2012
  • For domestic aircraft industry, not mass production of components is limited, small production scale of the order is made by part because many kinds of hundreds of thousands of kinds of small quantity batch production system are taking. But the high reliability and stability are required during the processing because they require high precision parts are required. It is found that when C-axis rotation speed was increased, the diameter of the cutting tool decreased with increasing surface roughness, while the turn-mail feed rate was increased with increasing the surface roughness.

진동 마이크로 밀링을 이용한 미세 반복 패턴 가공 기술 연구 (Machining of Repetitive Micro Patterns using Oscillation Micro Milling)

  • 노승국;김경호;박종권
    • 한국정밀공학회지
    • /
    • 제31권5호
    • /
    • pp.381-387
    • /
    • 2014
  • This paper introduces a system to machine micro-sized patterns effectively on surface based on micro-milling process using tools with simultaneous rotation and oscillation, oscillation micro milling. To review the effectiveness of proposed concept, we integrated a micro-spindle supported by active magnetic bearings with a precision 3-axis air bearing stage using double-wedge mechanism, and tested this oscillation milling. Two types of oscillation milling were tested, which are linear oscillation milling with a flat end mill and elliptical oscillation milling with a ball end mill with 0.3 mm of diameter. The spindle was rotating 110 krpm and workpiece was moving constant speed of 2~8 mm/sec during the oscillation milling. As the results, multiple oval shape dimples were generated in regular spacing, and the variation of elliptical motion made different shapes of patterns. The results showed that proposed oscillation milling can be successfully used for machining repeated micro-patterns.

Plunge Milling Force Model using Instantaneous Cutting Force Coefficients

  • Ko Jeong-Hoon
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제7권3호
    • /
    • pp.8-13
    • /
    • 2006
  • Plunge milling process is used for machining hole and is widely used in aerospace, automobile, and die/mold industries. The cutter is fed in the direction of spindle axis which has the highest structural rigidity. The kinematics of plunge milling differs from the traditional turning and milling in aspect of tool engagement and chip generation. This paper proposes the mechanistic cutting force model for plunge milling. Uncut chip thickness is calculated using the present cutter edge position and the previous cutter edge position. Instantaneous cutting force coefficients, which depend only on instantaneous uncut chip thickness, are derived based on the mechanistic approach. The developed cutting force model is verified through comparison of the predicted and the measured cutting forces.

3축 밀링 가공의 공구 충돌 검증 (Verification of Tool Collision for 3-Axis Milling)

  • 정연찬;박정환
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집C
    • /
    • pp.116-121
    • /
    • 2001
  • Verification of tool collision is an important issue in die and mold machining. In this paper three functions of verification are schematically explained based on Z-Map model. The first function is getting a collision-free region when a tool assembly and a part surface model are given. The second function estimates the shortest length of cutter shank with that the tool cuts all of a region without collision. The last one is cutting simulation considering all parts of tool assembly as well as cutter blade. Those functions can be easily implemented by using several basic operators of Z-Map model which are explained also. Proposed approaches have enough accuracy to verify collision in reasonable computing time.

  • PDF

탄소섬유복합재 3축 밀링 알고리즘 개발 (3-Axis Milling Algorithm Development for Carbon Fiber Reinforced Polymer (CFRP) Composites)

  • 루오산;바예스테레자;동주민;전병국
    • 한국정밀공학회지
    • /
    • 제33권6호
    • /
    • pp.447-452
    • /
    • 2016
  • The simulation of Carbon fiber reinforced polymer (CFRP) machining facilitates the selection of optimal cutting parameter for high machining efficiency and better surface quality. In this study, This paper proposes a dual-dexel model to represent the fiber laminate with computational geometry method to calculate the fiber length removed per revolution and fiber cutting angles. A flat end milling simulation software is developed in C# to simulate and display the CFRP milling process. During simulation, fiber lengths, fiber cutting angle and engaged cutting angle can be displayed in real-time. A CFRP plate with different angles in different layer is used to compare the simulation results.

자유곡면 가공을 위한 CAD/CAM 시스템 (An Integrated System for Computer-Aided Design and Manufacturing of Sculptured Surface)

  • 김광수;최영환
    • 대한산업공학회지
    • /
    • 제17권1호
    • /
    • pp.37-49
    • /
    • 1991
  • This report describes an integrated approach to sculptured surface design and manufacture, and a software package for it on a multi-axis NC milling machine. The integrated software consists of four parts : (1) surface fitting procedure for generating the characteristic polyhedron from 3 dimensional CMM data, (2) surface description for generating the mathematical representation of sculptured surfaces. (3) tool path generation for approximating the surface representation into a sequence of linear cutter paths, and (4) tool control for generating the corresponding joint variable values. This integrated approach is generally applicable to sculptured surface manufacturing where multi-axis milling machines are necessary to produce smooth three-dimensional surfaces.

  • PDF

기계 특성에 근거한 5축 밀링가공 시간의 예측 (5-axis Milling Machining Time Estimation based on Machine Characteristics)

  • 소범식;정희진;정융호
    • 한국CDE학회논문집
    • /
    • 제12권1호
    • /
    • pp.1-7
    • /
    • 2007
  • In this paper, we present a machining time estimation algorithm for 5-axis high-speed machining. Estimation of machining time plays an important role in process planning and production scheduling of a shop. In contrast to the rapid evolution of machine tools and controllers, machining time calculation is still based on simple algorithms of tool path length divided by input feedrates of NC data, with some additional factors from experience. We propose an algorithm based on 5-axis machine behavior in order to predict machining time more exactly. For this purpose, we first investigated the operational characteristics of 5-axis machines. Then, we defined some dominant factors, including feed angle that is an independent variable for machining speed. With these factors, we have developed a machining time calculation algorithm that has a good accuracy not only in 3-axis machining, but also in 5-axis high-speed machining.

퍼지논리 제어에 의한 CNC 서보기구의 마찰보정에 관한 연구 (A Study on the Friction Compensation in CNC Servomechanisms by Fuzzy Logic Control)

  • 지성철
    • 한국정밀공학회지
    • /
    • 제15권9호
    • /
    • pp.56-67
    • /
    • 1998
  • This paper introduces a friction compensation fuzzy logic controller, which utilizes a rule-based approach. The paper explains the algorithm of the proposed controller and compares it with a conventional PID controller in simulations and experiments. For the experiments, the two control algorithms were implemented on a 3-axis milling machine in contour milling. These simulation and experimental analyses show that the proposed fuzzy logic controller has superior performance over conventional PID controllers In terms of part contour accuracy.

  • PDF

삼각망 곡면의 3축 라운드엔드밀 가공을 위한 공구경로 생성 (Toolpath Generation for Three-axis Round-end Milling of Triangular Mesh Surfaces)

  • 정연찬
    • 한국정밀공학회지
    • /
    • 제26권2호
    • /
    • pp.133-140
    • /
    • 2009
  • Presented in this paper is a method to generate round-endmill toolpaths for sculptured surfaces represented as a triangular mesh model. The proposed method is applicable in toolpath generation for ball-endmills and flat-endmills because the round-endmill is a generalized tool in three-axis NC (numerical control) milling. The method uses a wireframe model as the offset model that represents a cutter location surface. Since wireframe models are relatively simple and fast to calculate, the proposed method can process large models and keep high precision. Intersection points with the wireframe offset model and a tool guide plane are calculated, and intersection curves are constructed by tracing the intersection points. The final step of the method is extracting regular curves from the intersection curves including degenerate and self-intersected segments. The proposed method is implemented and tested, and a practical example is presented.